细化搜索
结果 1-10 的 56
Growing enough food without enough water. 全文
2011
Molden, D.
Water scarcity is already a reality. More food will be required for a growing and wealthier and urbanized population that will put more pressure on water resources. With several water-related limits reached or breached - groundwater decline, shrinking rivers and threatened fisheries - we must ask, Will there be enough water to grow enough food? It is possible to produce the food needed, but if present practices continue it is not probable that we will solve the many poverty and environmental challenges confronting us. To share a scarce resource and to limit environmental damage in the face of climate change, it is imperative to limit future water use. Important pathways to growing enough food with limited water are to increase productivity of water in irrigated and rainfed areas, improve water management in low-yielding rainfed areas, and to consider our own food consumption patterns. In pockets of poverty in sub-Saharan Africa and Asia, expanding access to water through a range of water management solutions holds the key to food security and poverty reduction. For sustainable water use, water managers must consider agriculture as an ecosystem and how other ecosystem services are impacted through water. These actions will require serious changes in how we think about water and food, and how we govern water and land resources.
显示更多 [+] 显示较少 [-]Ecosystem Services in the Water-Energy-Food Nexus 全文
2015
Bekchanov, Maksud | Ringler, Claudia | Mueller, Marc
Given their substantial societal benefits, such as supporting economic activities and providing better livelihoods in rural areas, ecosystem services should gain higher importance in water-food-energy nexus debates. Yet, not all values from ecosystems are quantifiable, data is often not adequate and methods of measuring these values are not sound. This situation challenges researchers and water managers to improve research tools and give adequate attention to ecosystem services by implementing interdisciplinary approaches and integrated management of ecosystems and their services.
显示更多 [+] 显示较少 [-]Ecosystem services in the water-energy-food nexus 全文
2015
Bekchanov, Maksud | Ringler, C. | Mueller, M.
Given their substantial societal benefits, such as supporting economic activities and providing better livelihoods in rural areas, ecosystem services should gain higher importance in water-food-energy nexus debates. Yet, not all values from ecosystems are quantifiable, data is often not adequate and methods of measuring these values are not sound. This situation challenges researchers and water managers to improve research tools and give adequate attention to ecosystem services by implementing interdisciplinary approaches and integrated management of ecosystems and their services.
显示更多 [+] 显示较少 [-]Ecosystem services in the water-energy-food nexus 全文
2015
Bekchanov, Maksud | Ringler, Claudia | Mueller, M.
Given their substantial societal benefits, such as supporting economic activities and providing better livelihoods in rural areas, ecosystem services should gain higher importance in water-food-energy nexus debates. Yet, not all values from ecosystems are quantifiable, data is often not adequate and methods of measuring these values are not sound. This situation challenges researchers and water managers to improve research tools and give adequate attention to ecosystem services by implementing interdisciplinary approaches and integrated management of ecosystems and their services.
显示更多 [+] 显示较少 [-]Water, food and poverty: global- and basin-scale analysis 全文
2011
Cook, Simon | Fisher, Myles | Tiemann, Tassilo | Vidal, Alain
Global population growth exerts stresses on river basins that provide food, water, energy and other ecosystem services. In some basins, evidence is emerging of failures to satisfy these demands. This paper assembles data from nine river basins in a framework that relates water and food systems to development. The framework provides a consistent basis for analysis of the water and food problem globally, while providing insight into specific conditions within basins. The authors find that successes occur when demand is met by increased productivity, while failure occurs when factors conspire to prevent development of land and water resources.
显示更多 [+] 显示较少 [-]Sustainable intensification: overcoming land and water constraints on food production 全文
2015
Chartres, C. J. | Noble, Andrew
Feeding over 9 billion people by the second half of this century will require a major paradigm shift in agricultural systems. Agriculture uses approximately 40 % of the terrestrial surface, is the major user of fresh water resources and contributes 17%of greenhouse gas emissions. In turn, agriculture will be detrimentally affected by climate change in many climatic regions. Impacts of agriculture on ecosystem services include land clearing, loss of forest cover and biodiversity, significant soil degradation and water quality decline. Agricultural production will have to increase, even if we can reduce the rate of increase in demand for food. Given the current pressures on natural resources, this will have to be achieved by some form of agricultural intensification that causes less environmental impact. Therefore, it is not just intensification of agriculture, but ‘sustainable intensification’ that must be at the forefront of the paradigmshift. There is also a need to assess the situation holistically, taking into account population growth and resource intensive consumption patterns, improved systems of governance, changing diets and reducing waste. We review how and where natural resources are being placed under increasing pressure and examine the Becological footprint^ of agriculture. Suggested solutions include the application of existing scientific knowledge, implementation of emerging principles for sustainable land and water management and reclamation of salinized land. Encouragement of community action and private sector supply chain and production codes, backed up by improved national and regional governance and regulation also need to be encouraged if we are to see agricultural production become truly sustainable.
显示更多 [+] 显示较少 [-]Sustainable intensification: overcoming land and water constraints on food production 全文
2015
Chartres, Colin J. | Noble, A.D.
Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus? 全文
2016
Vanham, D.
This paper is a perspective paper, which investigates whether the water footprint (WF) concept addresses the water–food–energy–ecosystem nexus. First, the nexus links between (1) the planetary boundary freshwater resources (green and blue water resources) and (2) food security, energy security, blue water supply security and water for environmental flows/water for other ecosystem services (ES) are analysed and graphically presented. Second, the WF concept is concisely discussed. Third, with respect to the nexus, global water resources (green and blue) availability and use are discussed and graphically presented with an indication of quantities obtained from the literature. It is shown which of these water uses are represented in WF accounting. This evaluation shows that general water management and WF studies only account for the water uses agriculture, industry and domestic water. Important water uses are however generally not identified as separate entities or even included, i.e. green and blue water resources for aquaculture, wild foods, biofuels, hydroelectric cooling, hydropower, recreation/tourism, forestry (for energy and other biomass uses) and navigation. Fourth, therefore a list of essential separate components to be included within WF accounting is presented. The latter would be more coherent with the water–food–energy–ecosystem nexus and provide valuable extra information and statistics.
显示更多 [+] 显示较少 [-]Considering Resources Beyond Water: Irrigation and Drainage Management in the Context of the Water–Energy–Food Nexus 全文
2018
Avellán, Tamara | Ardakanian, Reza | Perret, Sylvain R. | Ragab, Ragab | Vlotman, Willem | Zainal, Hayati | Im, Sangjun | Gany, Hafied A.
While the world is facing unprecedented transitions and threats we need to deeply rethink the relationships between water and energy use, food production, and ecosystem protection. This includes the development and deployment of ambitious, out‐of‐the‐box solutions towards sustainable development. This paper is based upon recent discussions before and during the 2nd World Irrigation Forum in Chiang Mai, Thailand. This paper takes stock of current knowledge and analyses the most recent trends in water, irrigation and the environment. It discusses the requirements for strategic approaches and the contributions of irrigation and drainage to Sustainable Development Goals. Firstly, we concentrated on renewed and more balanced relationships between water, energy, food and ecosystems in the context of irrigation and drainage management. Secondly, we assessed the positive and negative impact of agricultural water use in order to demonstrate and improve its performance. Given exacerbated competition and water resource scarcity, a better understanding of the positive effects and valuable ecosystem services provided by irrigation and drainage systems could pave the way to maximizing benefits and safeguarding the environment. Lastly, we tried to address the role of stakeholders in irrigation governance. This includes active contribution to policy‐making and planning, incentives, and most importantly, capacity development. Copyright © 2017 John Wiley & Sons, Ltd.
显示更多 [+] 显示较少 [-]The Volta River Basin: water for food, economic growth and environment
2016
Williams, Timothy O. | Mul, Marloes L. | Biney, C.A. | Smakhtin, Vladimir U.