细化搜索
结果 1-5 的 5
Upland hill farming for water, wildlife and food 全文
2004
Everard, Mark | Kenmir, Bill | Walters , Carl | Holt, Edward
The economic, environmental and social benefits of more sensitive land use practices that protect or restore the natural functions of river catchments have been widely discussed. Changing land use has implications for a wide range of other biological communities. Some studies have already been undertaken on the benefits of sensitive farming at the catchment scale in England and Wales. However, there is a gap in these studies at the local scale, and particularly for upland farms from which headwaters arise. This article documents a case study relating to a successful partnership in Cumbria, UK, set within the wider context of catchment management. Whilst the case study is not highly detailed, and some costs have been described in outline only to protect confidentiality and commercial sensitivity, it provides some generic lessons and may therefore be useful in informing more sustainable policy-making. High Hullockhowe Farm near Haweswater, which was used a the case study highlighting changes in farm practise, costs and benefits, water resources and biodiversity. The authors relate the case study to wider policy implications.
显示更多 [+] 显示较少 [-]Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK 全文
2018
Salmoral, Gloria | Yan, Xiaoyu
Evaluations of food, energy and water (FEW) linkages are rapidly emerging in contemporary nexus studies. This paper demonstrates, from a food consumption perspective, the potential of life cycle thinking in understanding the complex and often “hidden” linkages between FEW systems. Our study evaluates the upstream virtual water and embodied energy in food consumption in the Tamar catchment, South West England, distinguishing between domestic production and imports origin. The study also evaluates key inputs, including virtual nutrients and animal feed, when tracking supply chain of food products. Based on current dietary patterns and food products selection, the catchment consumes annually 834 TJ, 17 hm³ and 244 hm³ of energy, blue water and green water, respectively. Tamar is not self-sufficient in terms of food and requires imports of food products, as well as imports of virtual nutrients and animal feed for local production. Consequently, 51% of the embodied energy and 88% blue and 45% green virtual water in food consumed within the catchment are imported. Most of the embodied energy (58%) and green virtual water (90%) are because of animal feed production, where nearly half of embodied energy (48%) and green virtual water (42%) come from imports. 92% of blue virtual water is used for irrigation and primarily happens elsewhere due to imports. Irrigation is the process that demands the largest amount of energy for the crop-based products, with 38% of their total energy demand, followed by fertilisers production (24%). Our study illustrates water and energy hotspots in the food life cycle and highlights potential FEW risks and trade-offs through trade. This is useful considering potential unexpected changes in trade under recent global socio-political trends. Currently available databases and software make LCA a key tool for integrated FEW nexus assessments.
显示更多 [+] 显示较少 [-]Regulating the water-energy-food nexus: Interdependencies, transaction costs and procedural justice 全文
2017
Larcom, Shaun | van Gevelt, Terry
There have been calls for an overhaul of regulatory and governance frameworks to incorporate the implications of the water-energy-food nexus. We map one small component of the regulatory space of the nexus and highlight its immense complexity. We draw on insights from the economics and socio-legal literatures to show that a decentralised approach to regulation based upon procedural justice can enable the trade-offs of the nexus to be considered and addressed. We use a nexus case study of micro hydro-electricity generation in Dartmoor National Park in England to show that when we take into account interactions between state and non-state regulation, the economic concepts of interdependencies and transaction costs, and a recognition that regulation of the nexus is a process involving decisions of procedural justice, some existing regulatory frameworks are already well-equipped to deal with the implications of nexus analysis.
显示更多 [+] 显示较少 [-]The energy-water-food nexus: Strategic analysis of technologies for transforming the urban metabolism 全文
2014
Villarroel Walker, R. | Beck, M.B. | Hall, J.W. | Dawson, R.J. | Heidrich, O.
Urban areas are considered net consumers of materials and energy, attracting these from the surrounding hinterland and other parts of the planet. The way these flows are transformed and returned to the environment by the city is important for addressing questions of sustainability and the effect of human behavior on the metabolism of the city. The present work explores these questions with the use of systems analysis, specifically in the form of a Multi-sectoral Systems Analysis (MSA), a tool for research and for supporting decision-making for policy and investment. The application of MSA is illustrated in the context of Greater London, with these three objectives: (a) estimating resource fluxes (nutrients, water and energy) entering, leaving and circulating within the city-watershed system; (b) revealing the synergies and antagonisms resulting from various combinations of water-sector innovations; and (c) estimating the economic benefits associated with implementing these technologies, from the point of view of production of fertilizer and energy, and the reduction of greenhouse gases. Results show that the selection of the best technological innovation depends on which resource is the focus for improvement. Urine separation can potentially recover 47% of the nitrogen in the food consumed in London, with revenue of $33 M per annum from fertilizer production. Collecting food waste in sewers together with growing algae in wastewater treatment plants could beneficially increase the amount of carbon release from renewable energy by 66%, with potential annual revenues of $58 M from fuel production.
显示更多 [+] 显示较少 [-]Assessing catchment scale water quality of agri-food systems and the scope for reducing unintended consequences using spatial life cycle assessment (LCA) 全文
2022
McAuliffe, Graham A. | Zhang, Yusheng | Collins, Adrian L.
Life cycle assessment is a multidisciplinary framework usually deployed to appraise the sustainability of various product or service supply-chains. Over recent decades, its use in the agri-food sector has risen sharply, and alongside this, a wide range of methodological advances have been generated. Spatial-life cycle assessment, defined in the current document as the interpretation of life cycle assessment results within a geographical nature, has not gone unexplored entirely, yet its rise as a sub-method of life cycle assessment has been rather slow relative to other avenues of research (e.g., including the nutritional sciences within life cycle assessment). With this relative methodological stagnation as a motivating factor, our paper combines a process-based model, the Catchment Systems Model, with various life cycle impact assessments (ReCiPe, Centre for Environmental Studies and Environmental Product Declaration) to propose a simple, yet effective, approach for visualising the technically feasible efficacy of various on-farm intervention strategies. As water quality was the primary focus of this study, interventions reducing acidification and eutrophication potentials of both arable and livestock farm types in the Southeast of England were considered. The study site is an area with a marked range of agricultural practices in terms of intensity. All impacts to acidification potential and eutrophication potential are reported using a functional unit of 1 ha. Percentage changes relative to baseline farm types, i.e., those without any interventions, arising from various mitigation strategies, are mapped using geographical information systems. This approach demonstrates visually how a spatially-orientated life cycle assessment could provide regional-specific information for farmers and policymakers to guide the restoration of certain waterbodies. A combination of multiple mitigation strategies was found to generate the greatest reductions in pollutant losses to water, but in terms of individual interventions, optimising farm-based machinery (acidification potential) and fertiliser application strategies (eutrophication potential) were found to have notable benefits.
显示更多 [+] 显示较少 [-]