细化搜索
结果 1-5 的 5
Water resources transfers through Chinese interprovincial and foreign food trade 全文
2014
Dalin, Carole | Hanasaki, Naota | Qiu, Huanguang | Mauzerall, Denise L. | Rodríguez-Iturbe, Ignacio
China’s water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability—with abundant agricultural land and little water resources in the north—increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities’ virtual water content to build China’s domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China’s domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China’s soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km ³/y irrigation water savings, 41 km ³/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.
显示更多 [+] 显示较少 [-]Climate change and temperature rise: Implications on food- and water-borne diseases 全文
2012
El-Fadel, Mutasem | Ghanimeh, Sophia | Maroun, Rania | Alameddine, Ibrahim
This study attempts to quantify climate-induced increases in morbidity rates associated with food- and water-borne illnesses in the context of an urban coastal city, taking Beirut-Lebanon as a study area. A Poisson generalized linear model was developed to assess the impacts of temperature on the morbidity rate. The model was used with four climatic scenarios to simulate a broad spectrum of driving forces and potential social, economic and technologic evolutions. The correlation established in this study exhibits a decrease in the number of illnesses with increasing temperature until reaching a threshold of 19.2°C, beyond which the number of morbidity cases increases with temperature. By 2050, the results show a substantial increase in food- and water-borne related morbidity of 16 to 28% that can reach up to 42% by the end of the century under A1FI (fossil fuel intensive development) or can be reversed to ~0% under B1 (lowest emissions trajectory), highlighting the need for early mitigation and adaptation measures.
显示更多 [+] 显示较少 [-]Virtual-water content of agricultural production and food trade balance of Tunisia 全文
2015
Chahed, Jamel | Besbes, Mustapha | Hamdane, Abdelkader
This article is devoted to the assessment of Tunisian agricultural production and food trade balance water-equivalent. A linear regression model relating annual rainfall to crop yields is developed to estimate the agricultural production water-equivalent. Its implementation is based on national data for crop and animal production, leading to food demand water-equivalent quantification. Results highlight the relationship between agricultural and water policies and provide a picture of food security in the country in relation to local agricultural production, and to virtual water fluxes related to foodstuffs trade balance.
显示更多 [+] 显示较少 [-]The impact of temperature on the inactivation of enteric viruses in food and water: a review 全文
2012
Bertrand, I. | Schijven, J.F. | Sánchez, G. | WynâJones, P. | Ottoson, J. | Morin, T. | Muscillo, M. | Verani, M. | Nasser, A. | de Roda Husman, A.M. | Myrmel, M. | Sellwood, J. | Cook, N. | Gantzer, C.
Temperature is considered as the major factor determining virus inactivation in the environment. Food industries, therefore, widely apply temperature as virus inactivating parameter. This review encompasses an overview of viral inactivation and virus genome degradation data from published literature as well as a statistical analysis and the development of empirical formulae to predict virus inactivation. A total of 658 data (time to obtain a first log10 reduction) were collected from 76 published studies with 563 data on virus infectivity and 95 data on genome degradation. Linear model fitting was applied to analyse the effects of temperature, virus species, detection method (cell culture or molecular methods), matrix (simple or complex) and temperature category (<50 and ≥50°C). As expected, virus inactivation was found to be faster at temperatures ≥50°C than at temperatures <50°C, but there was also a significant temperature–matrix effect. Virus inactivation appeared to occur faster in complex than in simple matrices. In general, bacteriophages PRD1 and PhiX174 appeared to be highly persistent whatever the matrix or the temperature, which makes them useful indicators for virus inactivation studies. The virus genome was shown to be more resistant than infectious virus. Simple empirical formulas were developed that can be used to predict virus inactivation and genome degradation for untested temperatures, time points or even virus strains.
显示更多 [+] 显示较少 [-]Food chain model based on field data to predict westslope cutthroat trout (Oncorhynchus clarkii lewisi) ovary selenium concentrations from water selenium concentrations in the Elk Valley, British Columbia 全文
2012
Orr, P. L. | Wiramanaden, C. I. E. | Paine, M. D. | Franklin, W. | Fraser, C.
Previous studies conducted in the Elk River watershed showed that selenium concentrations are higher in aquatic biota in lentic compared to lotic habitats of the system having similar water selenium concentrations. Studies have also shown that water selenium concentrations have increased over time (∼10% per year) and recent annual average concentrations have ranged up to 0.044 mg/L in areas downstream from mine discharges. For the present study, trophic transfer of selenium was characterized in lotic versus lentic habitats using concentrations measured in field‐collected samples and assuming a three‐step food chain of water to the base of the food web (biofilm), to benthic invertebrates, and then to westslope cutthroat trout (WCT) ovaries. Food chain models were developed for each habitat type (lotic and lentic) by combining linear regression equations for the three transfer relationships, allowing for prediction of fish ovary concentrations from water concentrations. Greater accumulation of selenium in lentic areas was mostly attributable to greater uptake at the base of the food chain compared to lotic areas. Enrichment/trophic transfer factors for selenium at all levels of the lotic and lentic food chains decreased and then became near constant as exposure concentrations increased. The lotic model predicted little increase in WCT ovary selenium concentrations over an eightfold increase in water concentrations (∼0.005–0.040 mg/L), accounting for the lack of observed increase in within‐area fish tissue concentrations over time despite increasing trends in water concentrations. Environ. Toxicol. Chem. 2012;31:672–680. © 2011 SETAC
显示更多 [+] 显示较少 [-]