细化搜索
结果 1-10 的 54
More people, more food, worse water?: a global review of water pollution from agriculture 全文
2018
Mateo-Sagasta, Javier | Zadeh, S. M. | Turral, H.
Current patterns of agricultural expansion and intensification are bringing unprecedented environmental externalities, including impacts on water quality. While water pollution is slowly starting to receive the attention it deserves, the contribution of agriculture to this problem has not yet received sufficient consideration.We need a much better understanding of the causes and effects of agricultural water pollution as well as effective means to prevent and remedy the problem. In the existing literature, information on water pollution from agriculture is highly dispersed. This repost is a comprehensive review and covers different agricultural sectors (including crops, livestock and aquaculture), and examines the drivers of water pollution in these sectors as well as the resulting pressures and changes in water bodies, the associated impacts on human health and the environment, and the responses needed to prevent pollution and mitigate its risks.
显示更多 [+] 显示较少 [-]Measurement of free water in foods by secondary derivative thermogravimetry | Medición del agua libre en alimentos mediante termogravimetría de segunda derivada 全文
2018
Wang, Yubin | Zheng, Qingyun | Li, Wu | Ma, Yue | Zhao, Xiaoyan | Zhang, Chao
The thermogravimetry (TGA) and derivative thermogravimetry (DTG) methods have been used to measure the free water in low-moisture foods. In this study, the 2nd derivative thermogravimetry (2nd DTG) method distinguished the free and bound water based on the speed of moisture evaporation, which could be used for both low-moisture and high-moisture foods. First, the key factors related to moisture evaporation were optimized. Isothermal temperature of 30 ~ 50°C, dynamic temperature of 0.033 ~ 0.133°C/min, and flow rate of nitrogen of 20 ~ 40 mL/min were the optimal parameters for the 2nd DTG method. Under these conditions, the repeatability and reproducibility of the 2nd DTG method were enhanced, its applicability was expanded to high-moisture foods, and the accuracy was ± 4.0% of the nuclear magnetic resonance results. Hence, the 2nd DTG method is better suited for the measurement of free water in foods.
显示更多 [+] 显示较少 [-]Ensuring water security, food security, and clean water in the North China Plain – conflicting strategies 全文
2019
Wang, Shiqin | Hu, Yukun | Yuan, Ruiqiang | Feng, Wenzhao | Pan, Yun | Yang, Yonghui
The North China Plain (NCP) is a major food producing region in China. Overexploitation of groundwater for irrigation and overapplication of nitrogen (N) fertilizer have contributed to increased food production but have also resulted in water shortages and groundwater contamination. This paper reviews potential conflicts between strategies that ensure water security, food security, and water pollution reduction in the NCP. It outlines some agriculture-related strategies for resolving water shortages. Besides water saving and N saving technologies, policies such as fallow tillage, a water transfer project accounting for the recovery of groundwater level, and N management limiting N input in farmland are discussed. In particular, there are conflicts between the strategies for recovering shallow groundwater and releasing N from the unsaturated zone to the aquifer in the piedmont plain because a large amount of N is stored in the thick unsaturated zone. A transition from food-oriented strategies to sustainable development management of resources and the environment is necessary. To benefit from synergies and avoid tradeoffs between water security, food security, and clean water in the NCP, we must combine water and N management, groundwater level and water quantity control, socioeconomic issues, and climate change.
显示更多 [+] 显示较少 [-]Ecological Influences of Water-Level Fluctuation on Food Web Network 全文
2021
Que, Yanfu | Xie, Jiayi | Xu, Jun | Li, Weitao | Wang, Ezhou | Zhu, Bin
Seasonal water-level fluctuations may lead to changes in river nutrients, which causes corresponding changes in the trophic structure of an aquatic food web, and finally affects the whole ecosystem. In this study, we focused on the Ganjing River, a tributary of the Yangtze River, China. Common organisms were sampled and measured for carbon and nitrogen stable isotopes in the wet and dry seasons, respectively, and the relative contributions of different food sources were combined to construct the food web, so as to realize the influence of water-level fluctuation on aquatic food web. Our results showed that basal food sources for fish consumers were endogenous carbon sources such as POM, zooplankton and zoobenthos in the dry season, while high water level exposed fish to more diverse and abundant food sources, and the contribution proportions of exogenous carbon sources (e.g., terrestrial detritus) to consumers increased in the wet season. In parallel, the abundance and species diversity of fish were higher than those in the dry season. Most fish species had relatively higher trophic levels in the dry season compared to the wet season, because the increase in fish densities led to an increase in piscivores fish. The food web was composed of planktonic and benthic food chains in the dry season. During the wet season, the planktonic food chain was dominant, followed by the herbivorous food chain, and the benthic food chain was relatively less important. Therefore, water-level fluctuation may alter the trophic linkages within fish communities, which contributed to a more complex and interconnected food web. Moreover, as we expect, the stable isotope analysis food web was broadly in line with the gut content analysis food web.
显示更多 [+] 显示较少 [-]Stabilizing effects of seagrass meadows on coastal water benthic food webs 全文
2019
Jankowska, Emilia | Michel, Loïc N. | Lepoint, Gilles | Włodarska-Kowalczuk, Maria
Seagrass meadows ecosystem engineering effects are correlated to their density (which is in turn linked to seasonal cycles) and often cannot be perceived below a given threshold level of engineer density. The density and biomass of seagrass meadows (Z. marina) together with associated macrophytes undergo substantial seasonal changes, with clear declines in winter. The present study aims to test whether the seasonal changes in the density of recovering seagrass meadows affect the benthic food webs of the southern Baltic Sea (Puck Bay). It includes meiofauna, macrofauna and fish of vegetated and unvegetated habitats in summer and winter seasons. Two levels of organization have been tested – species-specific diet preferences using stable isotopes (δ13C, δ15N) in Bayesian mixing models (MixSIAR) and the community-scale food web characteristics by means of isotopic niches (SIBER). Between-habitat differences were observed for grazers, as a greater food source diversity in species from vegetated habitats was noted in both seasons. Larger between-habitat differences in winter were documented for suspension/detritus feeders. The community-wide approach showed that the differences between the habitats were greater in winter than in summer (as indicated by the lower overlap of the respective isotope niches). Overall, the presence of seagrass meadows increased ecological stability (in terms of the range of food sources utilized by consumers) in the faunal assemblage, while invertebrates from unvegetated areas shifted their diet to cope with winter conditions. Therefore, as a more complex system, not sensitive to seasonal changes, Z. marina meadows create a stable habitat with high resilience potential.
显示更多 [+] 显示较少 [-]A Water–Energy–Food Nexus Perspective on the Challenge of Eutrophication 全文
2018
Reddy, V Ratna | Cunha, Davi Gasparini Fernandes | Kurian, Mathew
This paper attempts to understand and explore the problem of eutrophication in the context of agriculture with the help of a nexus perspective. Eutrophication is significantly linked to water and energy resources with theoretically well-defined trade-offs and threshold levels. While looking at the linkages between water and land resources comprehensively, our paper questions the present approach to designing and implementing watershed management, and analyses the effects of agricultural intensification, especially in dry regions. Eutrophication is the process by which excessive nutrient loads in water bodies lead to undesirable water-quality problems and the degradation of the overall aquatic ecosystem. Due to limited information and knowledge on water and soil quality in most countries, farmers continue to use fertilizers at an increasing rate and agricultural run-off has been carrying ever more nitrogen and phosphorus into water bodies. This is likely to become a vicious cycle of eutrophication affecting food and water security. Of late, soil- and water-conservation interventions, like watershed development, are further reducing run-off. It is argued that there is a need to rethink the assumptions under which watershed interventions are designed and implemented.
显示更多 [+] 显示较少 [-]Modelling nutrient flows in a simplified local food-energy-water system 全文
2018
Yao, Yuxi | Martinez-Hernandez, Elias | Yang, Aidong
Sustainable use and management of nutrients is an important issue for food, energy and water systems. The close connections between the three systems, reflected by the “nexus” concept, warrant an integrated approach to nutrients management across the nexus. In this paper, dynamic modelling of nutrient flows in a local food-energy-water system is presented and applied to a simplified case study. The model was used to simulate several scenarios affecting nitrogen flows and stocks to assess the impact of a) the level of local wheat production, b) the selection of energy generation technology, and c) the management of available nutrient resources (digestate and straws). The simulation results showed that varying the proportion of locally produced wheat significantly affects the surface runoff and the nitrogen content in a local water body, with the latter increasing by nearly 70% in 50 years if about half of the wheat consumed is produced locally as opposed to being 100% imported. The introduction of anaerobic digestion as an energy generation option helps to supply more electricity, reduce the imported fertiliser, and also significantly reduce the landfilled nitrogen nutrient by up to 60 times, due to the reuse of the anaerobic digestate. On the other hand, a balanced consideration should be given between using the straw as fertiliser and as feedstock for energy generation. This work offers a first analysis of the food-energy-water nexus with a focus on nutrient flows and stocks. The modelling approach has the potential to inform holistic decision making with respect to nutrient usage, efficiency and the related environmental impact in the design of a local system for meeting the demand for food, energy and water.
显示更多 [+] 显示较少 [-]Potential of paddy drainage optimization to water and food security in China 全文
2021
Liu, Lianhua | Ouyang, Wei | Liu, Hongbin | Zhu, Jianqiang | Ma, Youhua | Wu, Qixia | Chen, Jingrui | Zhang, Dan
Rice production not only consumes large amounts of irrigation water and fertilizer, but also poses a high risk of water pollution by delivering nitrogen (N) through surface runoff. To ensure sustainable rice production, many water-saving irrigation managements have been proposed and implemented, but drainage water managements receive far less attention and need to be further explored. This study aimed to determine the paddy drainage optimization management and assess its potential to water and food security in China via different scale methods (from pot and field experiments to national assessment). The national investigation of water and N fertilizer use in paddy fields implied that diffuse N pollution was expected to continue increasing, especially in the Yangtze river basin. Two-years field experiments at typical sites identified that the tillering and jointing–booting stages were critical risk stages for N runoff loss, and pot experiments on the critical stages were conducted to determine the optimal drainage water level without yield reduction. Then, the applicability of paddy drainage optimization was verified and evaluated by drainage optimization field experiment and precipitation characteristics analysis. Finally, the potential of drainage optimization on mitigating N runoff loss was estimated by scenario analysis at the national scale. After implementing paddy drainage optimization in field experiments, surface runoff and nitrogen runoff loss decreased by 27.97–78.94% and 35.17–67.95%, respectively, without affecting rice yield. By full implementation of the optimal drainage and fertilization management, N runoff loss could be reduced by 0.19 Tg yr⁻¹ at the national scale. These results suggest that paddy drainage optimization is an agro-ecosystems friendly water management for sustainable rice production, and has notable potential to ensure water and food security in China.
显示更多 [+] 显示较少 [-]The food-water quality nexus in periurban aquacultures downstream of Bangkok, Thailand 全文
2019
Mrozik, Wojciech | Vinitnantharat, Soydoa | Thongsamer, Thunchanok | Pansuk, Nipapun | Pattanachan, Pavinee | Thayanukul, Parinda | Acharya, Kishor | Baluja, Marcos Quintela | Hazlerigg, Charles | Robson, Aidan F. | Davenport, Russell J. | Werner, David
Peri-urban aquacultures produce nutritious food in proximity to markets, but poor surface water quality in rapidly expanding megacities threatens their success in emerging economies. Our study compared, for a wide range of parameters, water quality downstream of Bangkok with aquaculture regulations and standards. For parameters not meeting those requirements, we sought to establish whether aquaculture practice or external factors were responsible. We applied conventional and advanced methods, including micropollutant analysis, genetic markers, and 16S rRNA amplicon sequencing, to investigate three family-owned aquacultures spanning extensive, semi-intensive and intensive practices. Canals draining the city of Bangkok did not meet quality standards for water to be used in aquaculture, and were sources for faecal coliforms, Bacteriodes, Prevotella, Human E. coli, tetracycline resistance genes, and nitrogen into the aquaculture ponds. Because of these inputs, aquacultures suffered algae blooms, with and without fertilizer and feed addition to the ponds. The aquacultures were sources of salinity and the herbicide diuron into the canals. Diuron was detectable in shrimp, but not at a level of concern to human health. Given the extent and nature of pollution, peri-urban water policy should prioritize charging for urban wastewater treatment over water fees for small-scale agricultural users. The extensive aquaculture attenuated per year an estimated twenty population equivalents of nitrogen pollution and trillions of faecal coliform bacteria inputs from the canal. Extensive aquacultures could thus contribute to peri-urban blue-green infrastructures providing ecosystem services to the urban population such as flood risk management, food production and water pollution attenuation.
显示更多 [+] 显示较少 [-][Overfertilized water - underfertilized fields: approach to cycling and sustainable food supply [Bohuslaen]]
1996
Schoenbeck, A.