细化搜索
结果 1-5 的 5
Perchlorate as an emerging contaminant in soil, water and food 全文
2016
Kumarathilaka, Prasanna | Oze, Christopher | Indraratne, S.P. | Vithanage, Meththika
Perchlorate (ClO4−) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., (18O/16O and 17O/16O) and 37Cl/35Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg−1 body weight/day which translates to a drinking water level of 24.5 μg L−1. Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented.
显示更多 [+] 显示较少 [-]Quantification of Hypochlorite in Water Using the Nutritional Food Additive Pyridoxamine 全文
2021
Kaarsholm, Kamilla M. S. | Kokkoli, Argyro | Keliri, Eleni | Mines, Paul D. | Antoniou, Maria G. | Jakobsen, Mogens Havsteen | Andersen, Henrik R.
Chlorine is a widely used disinfectant and oxidant used for an array of municipal and industrial applications, including potable water, swimming pools, and cleaning of membranes. The most popular method to verify the concentration of free chlorine is the colorimetric method based on DPD (N, N-diethyl-p-phenylenediamine), which is fast and reasonably cheap, but DPD and its product are potentially toxic. Therefore, a novel, environmentally friendly colorimetric method for the quantification of residual chlorine based on the food additive pyridoxamine (4-(aminomethyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol) was investigated. Pyridoxamine is a B6 vitamin with an absorption maximum at 324 nm and fluorescence emission at 396 nm. Pyridoxamine reacts rapidly and selectively with free chlorine, resulting in a linear decrease both in absorbance and in emission, giving therefore calibration curves with a negative slope. The pyridoxamine method was successfully applied for the quantification of free chlorine from 0.2 to 250 mg/L. Using 1 cm cuvettes, the limit of quantification was 0.12 mg Cl₂/L. The pyridoxamine and the DPD methods were applied to actual environmental samples, and the deviation between results was between 4% and 9%. While pyridoxamine does not react with chloramine, quantification of monochloramine was possible when iodide was added, but the reaction is unfavourably slow.
显示更多 [+] 显示较少 [-]Reaction products from the subcritical water gasification of food wastes and glucose with NaOH and H₂O₂ 全文
2010
Muangrat, Rattana | Onwudili, Jude A. | Williams, Paul T.
The gasification of some selected components of food wastes using H₂O₂ as the oxidant and in the presence of NaOH has been investigated under subcritical water conditions. Hydrogen production was enhanced when both NaOH and H₂O₂ were used compared to when either NaOH or H₂O₂ alone was used or in their absence. Results indicated that the H₂O₂ acted to partially oxidize the samples while NaOH significantly increased hydrogen gas yields by promoting the water-gas shift reaction with subsequent CO₂ capture. In the presence of NaOH, the main components were Na₂CO₃, CH₃COONa and CH₃COONa·3H₂O. Char and tar production were suppressed in the presence of NaOH.
显示更多 [+] 显示较少 [-]Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water 全文
2008
Guentzel, J.L. | Lam, K.L. | Callan, M.A. | Emmons, S.A. | Dunham, V.L.
Food safety issues and increases in food borne illnesses have promulgated the development of new sanitation methods to eliminate pathogenic organisms on foods and surfaces in food service areas. Electrolyzed oxidizing water (EO water) shows promise as an environmentally friendly broad spectrum microbial decontamination agent. EO water is generated by the passage of a dilute salt solution (approximately 1% NaCl) through an electrochemical cell. This electrolytic process converts chloride ions and water molecules into chlorine oxidants (Cl2, HOCl/ClO-). At a near-neutral pH (pH 6.3-6.5), the predominant chemical species is the highly biocidal hypochlorous acid species (HOCl) with the oxidation reduction potential (ORP) of the solution ranging from 800 to 900 mV. The biocidal activity of near-neutral EO water was evaluated at 25 °C using pure cultures of Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. Treatment of these organisms, in pure culture, with EO water at concentrations of 20, 50, 100, and 120 ppm total residual chlorine (TRC) and 10 min of contact time resulted in 100% inactivation of all five organisms (reduction of 6.1-6.7 log10 CFU/mL). Spray treatment of surfaces in food service areas with EO water containing 278-310 ppm TRC (pH 6.38) resulted in a 79-100% reduction of microbial growth. Dip (10 min) treatment of spinach at 100 and 120 ppm TRC resulted in a 4.0-5.0 log10 CFU/mL reduction of bacterial counts for all organisms tested. Dipping (10 min) of lettuce at 100 and 120 ppm TRC reduced bacterial counts of E. coli by 0.24-0.25 log10 CFU/mL and reduced all other organisms by 2.43-3.81 log10 CFU/mL.
显示更多 [+] 显示较少 [-]Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton 全文
2015
Thiam, Abdoulaye | Sirés, Ignasi | Brillas, Enric
The degradation of 130 mL of mixtures of food azo dyes E122, E124 and E129 has been studied by electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) using a stirred tank reactor with either a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode. The main oxidant was hydroxyl radical formed at the anode from water oxidation and in the bulk from Fenton's reaction between added Fe2+ and H2O2 generated at the cathode. In sulfate medium, fast decolorization was found for all systems, but the almost total mineralization was more rapidly achieved by PEF with BDD. The performance with a real water matrix was slightly worse, although the removal of total organic load was still as high as 95%. The solar PEF (i.e., SPEF) treatment of dye mixtures using a 2.5 L flow plant with a BDD/air-diffusion cell coupled to a planar solar photoreactor is also reported. Fast decolorization and almost total mineralization was found in the presence of either sulfate, perchlorate, nitrate or a mixture of sulfate + chloride ions. In chloride medium, however, the formation of recalcitrant chloroderivatives decelerated the degradation process. Greater current efficiency and lower specific energy consumption were attained in sulfate medium at lower current density and higher azo dye content. A plausible reaction sequence based on 18 aromatic intermediates identified by GC–MS and 6 short-linear carboxylic acids detected by ion-exclusion HPLC has been proposed. The SPEF process promoted the photodegradation of Fe(III)-oxalate complexes and other undetected products. Sulfate and nitrate ions were always released to the medium.
显示更多 [+] 显示较少 [-]