细化搜索
结果 1-10 的 10
Climate change and temperature rise: Implications on food- and water-borne diseases 全文
2012
El-Fadel, Mutasem | Ghanimeh, Sophia | Maroun, Rania | Alameddine, Ibrahim
This study attempts to quantify climate-induced increases in morbidity rates associated with food- and water-borne illnesses in the context of an urban coastal city, taking Beirut-Lebanon as a study area. A Poisson generalized linear model was developed to assess the impacts of temperature on the morbidity rate. The model was used with four climatic scenarios to simulate a broad spectrum of driving forces and potential social, economic and technologic evolutions. The correlation established in this study exhibits a decrease in the number of illnesses with increasing temperature until reaching a threshold of 19.2°C, beyond which the number of morbidity cases increases with temperature. By 2050, the results show a substantial increase in food- and water-borne related morbidity of 16 to 28% that can reach up to 42% by the end of the century under A1FI (fossil fuel intensive development) or can be reversed to ~0% under B1 (lowest emissions trajectory), highlighting the need for early mitigation and adaptation measures.
显示更多 [+] 显示较少 [-]Impacts of soil and water pollution on food safety and health risks in China 全文
2015
Lü, Yonglong | Song, Shuai | Wang, Ruoshi | Liu, Zhaoyang | Meng, Jing | Sweetman, A. J. (Andrew J.) | Jenkins, Alan | Ferrier, Robert C. | Li, Hong | Luo, Wei | Wang, Tieyu
Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to ‘cancer villages’ which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach.
显示更多 [+] 显示较少 [-]A sustainable water-food-energy plan to confront climatic and socioeconomic changes using simulation-optimization approach 全文
2019
Zeng, X.T. | Zhang, J.L. | Yu, L. | Zhu, J.X. | Li, Z. | Tang, L.
The provision of reliable water resources, safe grain production, and sustainable energy supply can be deemed as key guarantees for economic growth and human living improvement, but which have been challenged by imbalance relationship between increasing demand and limited supply capacity. In this study, a sustainable water-food-energy plan has been developed to conduct an optimal framework into a multiple water-reservoir system for confronting regional natural and artificial damages such as water deficit, food crisis and electric insufficient contemporarily. A simulation-optimization approach has been proposed to handle multiple uncertainties due to climatic and socioeconomic changes. The proposed approach has advantages of reflecting the climatic change in a lumped and conceptual way; meanwhile, it is effective to deal with socioeconomic uncertainties regarded as probability and possibility distributions, reducing the risk of decision-making with Green criterions. The developed water-food-energy plan with simulation-optimization approach can be applied to a real case study of Jing River, China. The obtained results of water-food-energy shortage, optimal water allocation-food production-energy generation, flood control, and system benefit under various policy-scenarios can be identify comprehensive water-food-energy alternatives in a multi-reservoir optimization system. Meanwhile, the results associated with credibility confidence, risk-averse attitude parameter and robustness coefficient can support the generation of a water-food-energy plan with a robust manner. It can support the improvement of water supply, irrigative production, energy generation, industrial pattern adjustment, flood risk control, supply capacity at a regional view, with aim to achieve sustainability of human activities and resource-energy conservation.
显示更多 [+] 显示较少 [-]Modeling Vadose Zone Processes during Land Application of Food-Processing Waste Water in California's Central Valley 全文
2008
Miller, Gretchen R. | Rubin, Yoram | Mayer, K Ulrich | Benito, Pascual H.
Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste–stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L⁻¹ water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock–water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.
显示更多 [+] 显示较少 [-]Review of water quality criteria for water reuse and risk-based implications for irrigated produce under the FDA Food Safety Modernization Act, produce safety rule 全文
2019
Rock, Channah M. | Brassill, Natalie | Dery, Jessica L. | Carr, Dametreea | McLain, Jean E. | Bright, Kelly R. | Gerba, Charles P.
Questions related to the safety of alternative water sources, such as recycled water or reclaimed water (including grey water, produced water, return flows, and recycled wastewater), for produce production have been largely un-explored at the detail warranted for protection of public health. Additionally, recent outbreaks of Escherichia coli (E. coli) in fresh produce, in which agricultural water was suspected as the source, coupled with heightened media coverage, have elevated fruit and vegetable safety into the forefront of public attention. Exacerbating these concerns, new Federal regulations released by the U.S. Food and Drug Administration (FDA) as part of implementation of the FDA Food Safety Modernization Act (FSMA), require testing of agricultural water quality for generic E. coli. Here, we present a review of water quality criteria – including surface water, groundwater recreational water, and water reuse – in an attempt to better understand implications of new FDA regulations on irrigated produce. In addition, a Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate risks from pathogen contamination of food crops eaten fresh under the context of FDA regulations to provide perspective on current water reuse regulations across the country. Results indicate that irrigation water containing 126 CFU/100 mL of E. coli correspond to a risk of GI illness (diarrhea) of 9 cases in 100,000,000 persons (a 0.000009% risk) for subsurface irrigation, 1.1 cases in 100,000 persons (a 0.0011% risk) for furrow irrigation, and 1.1 cases in 1000 persons (a 0.11% risk) for sprinkler irrigation of lettuce. In comparison to metrics in states that currently regulate the use of recycled water for irrigation of food crops eaten fresh, the FDA FSMA water quality metrics are less stringent and therefore the use of recycled water presents a reduced risk to consumers than the FDA regulations. These findings, while limited to a one-time exposure event of lettuce irrigated with water meeting FSMA water quality regulations, highlight the need for additional assessments to determine if the scientific-basis of the regulation is protective of public health.
显示更多 [+] 显示较少 [-]A risk modeling framework to evaluate the impacts of climate change and adaptation on food and water safety 全文
2015
Smith, Ben A. | Ruthman, Todd | Sparling, Erik | Auld, H. | Comer, Neil | Young, Ian | Lammerding, Anna M. | Fazil, Aamir
Climate change may be a factor leading to increased risks of food- and waterborne illnesses from consumption of existing and emerging biological hazards. It is beneficial to develop integrated approaches to evaluate, and provide scientific assessments of, potential climate change adaptation measures to inform risk management related to climate and weather events. To this end, a risk modeling framework was created to facilitate estimations of the impact of weather and climate change on public health risks from biological hazards in food and water and to compare potential adaptation and risk mitigation strategies. The framework integrates knowledge synthesis methods, data storage and maintenance, and stochastic modeling. Risk assessment models were developed for food and water safety case studies for demonstrative purposes. Scenario analyses indicated that implementing intervention measures to adapt to changing climate impacts might mitigate future public health risks from pathogens to varying degrees. The framework brings a generic approach to allow for comparison of relative public health risks and potential adaptation strategies across hazards, exposure pathways, and regions to assist with preventive efforts and decision-making.
显示更多 [+] 显示较少 [-]Assessing the risk of the food-energy-water nexus of urban metabolism: A case study of Kinmen Island, Taiwan 全文
2020
Chen, I-Chun | Wang, Yi-Hsin | Lin, Wei | Ma, Hwong-wen
Implementing effective resource management is crucial for urban sustainability. Potential resource management strategies should be assessed under the framework of a resource nexus to avoid problem shifting. The urban metabolism of food, energy, and water is driven by lifestyle, industrial structure, and infrastructure. This study employed material flow analysis to identify resource metabolism through the phases of supply, process, demand, and final sink. The resource intensity of urban activities and the risk of the nexus of resources were quantified to illuminate management strategies. This study investigated the food-energy-water nexus (FEW nexus) for a small and multi-sector island city, Kinmen, and found that the nexus risk of water for food is the highest. Water and energy consumption have excessive loads on resource metabolism in a multi-sector city, and the main demand sectors increase the nexus risk in water for food. The results indicated that higher risk results from higher resource consumption intensity, particularly in areas of economic growth. Resource management of the FEW nexus needs the best tradeoff strategy to meet the goals of urban metabolism sustainability. The risk assessment framework can support the design of optimal resource management strategies to pursue urban sustainability. Consequently, given the limitations of water treatment technology, the impact of energy risk mitigation is poor (below 4% of energy risk in 2015) and the energy risk will continue to increase (by about 10% based on the economic activity). As a result, imported water is the best tradeoff strategy to meet the FEW nexus safety for Kinmen City as a low-resource and sightseeing activity area.
显示更多 [+] 显示较少 [-]Control of Listeria innocua Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat 全文
2018
Jeon, Hye Ri | Kwon, Mi Jin | Yoon, Ki Sun
Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.
显示更多 [+] 显示较少 [-]Viability of Salmonella Typhimurium biofilms on major food-contact surfaces and eggshell treated during 35 days with and without water storage at room temperature 全文
2020
Salmonella is one of the main foodborne pathogens that affect humans and farm animals. The Salmonella genus comprises a group of food-transmitted pathogens that cause highly prevalent foodborne diseases throughout the world. The aim of this study was to appraise the viability of Salmonella Typhimurium biofilm under water treatment at room temperature on different surfaces, specifically stainless steel (SS), plastic (PLA), rubber (RB), and eggshell (ES). After 35 D, the reduction of biofilm on SS, PLA, RB, and ES was 3.35, 3.57, 3.22, and 2.55 log CFU/coupon without water treatment and 4.31, 4.49, 3.50, and 1.49 log CFU/coupon with water treatment, respectively. The dR value (time required to reduce bacterial biofilm by 99% via Weibull modeling) of S. Typhimurium without and with water treatment was the lowest on PLA (176.86 and 112.17 h, respectively) and the highest on ES (485.37 and 2,436.52 h, respectively). The viability of the S. Typhimurium on ES and the 3 food-contact surfaces was monitored for 5 wk (35 D). The results of this study provide valuable information for the control of S. Typhimurium on different surfaces in the food industry, which could reduce the risk to consumers.
显示更多 [+] 显示较少 [-]Mycobacterium avium ssp. paratuberculosis detection in animals, food, water and other sources or vehicles of human exposure: A scoping review of the existing evidence 全文
2016
Waddell, Lisa | Rajić, Andrijana | Stärk, Katharina | McEwen, Scott A.
Mycobacterium avium ssp. paratuberculosis is the etiologic agent of Johne’s disease in ruminants and is hypothesized to be an infectious cause of Crohn’s disease, as well as some other human diseases. Due to key knowledge gaps, the potential public health impact of M. paratuberculosis is unknown. This scoping review aims to identify and characterised the evidence on potential sources and vehicles of M. paratuberculosis exposure for humans to better understand how exposure is likely to occur. Evidence from 255 primary research papers is summarized; most examined the prevalence or concentration of M. paratuberculosis in animals (farmed domestic, pets and wildlife) (n=148), food for human consumption (62) (milk, dairy, meat, infant formula) or water (drinking and recreational) and the environment (farm, pasture and areas affected by runoff water) (20). The majority of this research has been published since 2000 (Figure- abstract). Nine case-control studies examining risk factors for Crohn’s disease highlighted significant associations with the consumption of processed meats and cheese, while direct contact with ruminants, high risk occupations (farmer, veterinarian), milk consumption and water source were factors not associated with the disease and/or M. paratuberculosis exposure status. Molecular epidemiology studies demonstrated strain-sharing between species. Produce and seafood were the only previously suggested sources of human exposure for which there was no supporting evidence identified in this scoping review. The results of this review indicate that ruminant populations from around the globe are infected with M. paratuberculosis and many non-ruminant species have also been found to carry or be infected with M. paratuberculosis. Several potential sources for human exposure to M. paratuberculosis were identified; however there remain important gaps in quantitative information on the prevalence and concentration of M. paratuberculosis in contaminated sources of exposure. This information is critical to understanding the risk of exposure, opportunities for risk mitigation interventions and modelling exposures to distill the importance of various sources of human exposure to M. paratuberculosis including direct contact with animals and the environment as well as consumption of contaminated foods and water. Results of this study may be used to prioritize future research and to support evidence-informed decision-making on the M. paratuberculosis issue.
显示更多 [+] 显示较少 [-]