细化搜索
结果 1-2 的 2
Effect of Food Structure, Water Activity, and Long-Term Storage on X-Ray Irradiation for Inactivating Salmonella Enteritidis PT30 in Low-Moisture Foods 全文
2019
Steinburnner, Philip J. | Limcharoenchat, Pichamon | Suehr, Quincy J. | Ryser, Elliot T. | Marks, Bradley P. | Jeong, Sanghyup
Recent outbreaks and recalls of low-moisture foods contaminated with Salmonella have been recognized as a major public health risk that demands the development of new Salmonella mitigation strategies and technologies. This study aimed to assess the efficacy of X-ray irradiation for inactivating Salmonella on or in almonds (kernels, meal, butter), dates (whole fruit, paste), and wheat (kernels, flour) at various water activities (aw) and storage periods. The raw materials were inoculated with Salmonella Enteritidis PT30, conditioned to 0.25, 0.45, and 0.65 aw in a humidity-controlled chamber, processed to various fabricated products, and reconditioned to the desired aw before treatment. In a storage study, inoculated almond kernels were stored in sealed tin cans for 7, 15, 27, and 103 weeks, irradiated with X ray (0.5 to 11 kGy, targeting up to a ∼2.5-log reduction) at the end of each storage period, and plated for Salmonella survivors to determine the efficacy of irradiation in terms of D10-value (dose required to reduce 90% of the population). Salmonella was least resistant (D10-value = 0.378 kGy) on the surface of almond kernels at 0.25 aw and most resistant (D10-value = 2.34 kGy) on the surface of dates at 0.45 aw. The Salmonella D10-value was 61% lower in date paste than on whole date fruit. Storage of almonds generally had no effect on the irradiation resistance of Salmonella over 103 weeks. Overall, these results indicate that product structure (whole, meals, powder, or paste), water activity (0.25 to 0.65 aw), and storage period (0 to 103 weeks) should be considered when determining the efficacy of X-ray irradiation for inactivating Salmonella in various low-water-activity foods.
显示更多 [+] 显示较少 [-]Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination 全文
2019
Biata, N Raphael | Mashile, Geaneth Pertunia | Ramontja, James | Mketo, Nomvano | Nomngongo, Philiswa N.
This study reports a simple, rapid and greener method based on ultrasound assisted-cloud point extraction coupled with inductively coupled plasma-optical emission spectroscopy (ICP-OES) for preconcentration and determination of antimony (Sb), tin (Sn) and thallium (Tl) in food and water samples. Factors affecting the preconcentration procedure were optimized using fractional factorial design and response surface methodology based on Box-Behnken design. Under optimum conditions, the calibration graphs were linear over the concentration range of 0.023–700 μg L−1 with correlation coefficients up to 0.9994, the limits of detection ranged from 0.007–0.010 μg L−1, the limits of quantification were from 0.023 to 0.033 μg L−1 and the relative standard deviations (n = 15) were between 1.3% and 4.1%. In addition, the preconcentration factors were found to be 150, 145 and 160 for Sb, Sn and Tl, respectively. Finally, the developed method was successfully applied in various food and water samples as well as certified reference materials for rapid determination of Sb, Sn and Tl.
显示更多 [+] 显示较少 [-]