细化搜索
结果 1-5 的 5
Sustainable groundwater management in India needs a water-energy-food nexus approach 全文
2022
Mukherji, Aditi
Groundwater depletion in India is a result of water, energy, and food policies that have given rise to a nexus where growth in agriculture has been supported by unsustainable trends in water and energy use. This nexus emanates from India’s policy of providing affordable calories to its large population. This requires that input prices are kept low, leading to perverse incentives that encourage groundwater overexploitation. The paper argues that solutions to India’s groundwater problems need to be embedded within the current context of its water-energy-food nexus. Examples are provided of changes underway in some water-energy-food policies that may halt further groundwater depletion.
显示更多 [+] 显示较少 [-]Sustainable groundwater management in India needs a water-energy-food nexus approach
2020
Mukherji, Aditi
Water-energy-food-environment nexus in action: global review of precepts and practice 全文
2023
Shah, Tushaar
Using water-energy-food-environment (WEFE) nexus as the prism, this review explores evolution of groundwater governance in Iran, Saudi Arabia, Mexico, China, Bangladesh and India – which together account for two-thirds of the global groundwater-irrigated area. Global discourse has blamed widespread water scarcity squarely on supply-side policymaking and advocated a broader template of water governance instruments. Integrated Water Resources Management (IWRM) presented just such a template – with pricing, participation, rights and entitlements, laws, regulations, and river basin organizations – as additional water governance tools. However, the IWRM template faced disillusionment and pushback in many emerging economies. WEFE nexus, the new paradigm, prioritizes system-level optima over sectoral maxima by harnessing synergies and optimizing trade-offs between food, water, energy, soil, and eco-system sustainability within planetary boundaries. Realizing this vision presents a complex challenge in groundwater governance. Global groundwater economy comprises three sub-economies: (a) diesel-powered unregulated, as in Nepal terai, eastern India, Bangladesh, Pakistan Punjab and Sind, and much of Sub-Saharan Africa, where use-specific energy subsidies are impractical; (b) electricity-powered regulated, as in North America and Europe, where tubewells are authorized, metered and subject to consumption-linked energy charges; and (c) electricity-powered unregulated, as in geographies covered by our review – barring China, Bengal and Bangladesh – where unmeasured electricity subsidies have created a bloated groundwater economy. This last sub-economy represents the heartland of global groundwater malgovernance, least equipped to meet the sustainability challenge. It has an estimated 300 million horsepower of grid-connected electric pumps that are either unauthorized and/or unmetered and/or use free or heavily subsidized or pilfered power for irrigating 50–52 million hectares, nearly half of global groundwater-irrigated area. In (a) and (b), groundwater scarcity inspires water-energy saving behavior via increased energy cost of pumping. In sub-economy (c), users are immune to energy costs and impervious to groundwater depletion. Here, the WEFE nexus has remained blind to the irrigation realpolitik that catalyzes or constrains policy action. We explore why the political costs of rationalizing subsidies are prohibitive and exemplify how a smart transition from fossil to solar energy for pumping may offer an opportunity to turn the perverse WEFE nexus into a virtuous one.
显示更多 [+] 显示较少 [-]Situation analysis for polder 3. [Project report prepared by IWMI for the CGIAR Challenge Program on Water and Food (CPWF) under the project "Increasing the Resilinece of Agricultural and Aquacultural Systems in the Coastal Areas of the Ganges Delta: Project G3 - Water Governance and Community Based Management"].
2014
Silva, Sanjiv de
Situation analysis for polder 3. [Project report prepared by IWMI for the CGIAR Challenge Program on Water and Food (CPWF) under the project "Increasing the Resilinece of Agricultural and Aquacultural Systems in the Coastal Areas of the Ganges Delta: Project G3 - Water Governance and Community Based Management"].
2012
Silva, Sanjiv de