细化搜索
结果 1-8 的 8
Development of biodegradable water-proof material using food by-products
2004
Isobe, S. (National Food Research Inst., Tsukuba, Ibaraki (Japan))
Resource recovery from waste streams in a water-energy-food nexus perspective: Toward more sustainable food processing 全文
2020
Udugama, Isuru A. | Petersen, Leander A.H. | Falco, Francesco C. | Junicke, Helena | Mitic, Aleksandar | Alsina, Xavier Flores | Mansouri, Seyed Soheil | Gernaey, Krist V.
The recovery of resources from waste streams including food production plants can improve the overall sustainability of such processes from both economic and environmental points of view. This is because resource recovery solutions will be instrumental in overcoming the grand societal challenges in relation to the Water-Energy-Food (WEF) nexus in one of many aspects. Identification, development and implementation of resource recovery solutions in an industrial setting is a challenge that requires careful assessment of environmental impacts, technology readiness level (TRL), economics as well as other implementation aspects. This manuscript will first introduce these multi-disciplinary concepts followed by four case studies that are each at a different level of technological maturity and have a unique economic value proposition. The technologies demonstrated in these case studies directly convert either food waste, waste energy or wastewater into valuable raw materials. Using the case study experience as a basis, a roadmap to commercialisation is discussed where the focus is on understanding industrial needs, the role of industrial symbiosis and the current challenges that must be overcome. To this end, the objective of this manuscript is to go beyond the purely single-faceted technical discussion and provide an insight into the multi-faceted aspects of commercialising resource recovery technology development, which would be a key pillar in realising the future circular economy in line with UN’s sustainable development goals.
显示更多 [+] 显示较少 [-][Overfertilized water - underfertilized fields: approach to cycling and sustainable food supply [Bohuslaen]]
1996
Schoenbeck, A.
The life cycle environmental impacts of a novel sustainable ammonia production process from food waste and brown water 全文
2021
Ghavam, Seyedehhoma | Taylor, Caroline M. | Styring, Peter
To replace existing high impact ammonia production technologies, a new sustainability-driven waste-based technology producing green ammonia with and without urea was devised using life cycle thinking and sustainable design principles, targeting efficiency, carbon emissions, water, and power use competitiveness. We have used life cycle assessment to determine whether cradle-to-gate, multiple configurations of the core waste-based processes integrating several carbon capture/utilization options can compete environmentally with other available ammonia technologies. Our waste-to-ammonia processes reduce potential impacts from abiotic depletion, human toxicity, and greenhouse gas (GHG) emissions relative to fossil-based and renewable technologies. Among the assessed technologies, coupling dark fermentation with anaerobic digestion and capturing CO₂ for sequestration or later use is most efficient for GHGs, water, and energy, consuming 27% less energy and reducing GHGs by 98% compared to conventional ammonia. Water use is 38% lower than water electrolysis and GHGs are 94% below municipal waste incineration routes per kg NH₃. Additionally, displacing conventional, high impact urea by integrating urea production from process CO₂ decreases life cycle environmental impacts significantly despite increased energy demand. On a fertilizer-N basis, the ammonia + urea configuration without dark fermentation performs best on all categories included. Methane and ammonia leakage cause nearly all life cycle impacts, indicating that failing to prevent leakage undermines the effectiveness of new technologies such as these. Our results show that a green ammonia/ammonia + urea process family as designed here can reduce waste and prevent the release of additional CO₂ from ammonia production while avoiding fossil-based alternatives and decreasing emissions from biogenic waste sources.
显示更多 [+] 显示较少 [-]Evaluation of dairy food processing wash water solids as a protein source. III. Nitrogen utilization by heifers fed medium-concentrate diets
1991
May, T. | Williams, J.E. | Caton, J.S.
Eight multicannulated heifers (average BW 415 +/- 34 kg) were used in a replicated 4 X 4 Latin square to evaluate fluid milk processing wash water solids (WWS) as a dietary N source. Heifers were fed corn/cottonseed hull-based diets containing soybean meal (control, 0% WWS N) or WWS replacing soybean meal at 33, 67, or 100% of supplemental dietary N. Total tract and ruminal DM and OM digestibilities decreased linearly or cubically (P < .05) as dietary WWS N increased. Total ruminal VFA concentration (P < .05) and propionic acid molar proportion (P < .10) were greater in heifers fed 0 vs 100% WWS N. Heifers fed 0% WWS N had the greatest (P < .05) ruminal ammonia concentration at all sampling times. Dietary WWS did not affect (P > .10) ruminal pH, fluid dilution rate, fluid flow, fluid volume, or turnover time. Total tract N digestibility decreased quadratically (P < .10) with increasing WWS N in the diet. Supplemental WWS N did not affect (P > .10) flow of duodenal ammonia N or bacterial N, or efficiency of microbial N synthesis. Diets containing WWS N resulted in a cubic increase (P < .10) in duodenal flow of essential amino acids compared with 0% WWS N; however, there were no differences in small intestinal amino acid disappearance. Data indicate that WWS can replace 33% of the soybean meal N in a corn/cottonseed hull-based diet without decreasing ruminal fermentation, fluid digesta kinetics, microbial efficiency, or small intestinal amino acid utilization.
显示更多 [+] 显示较少 [-]The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products 全文
2009
Stojceska, Valentina | Ainsworth, Paul | Plunkett, Andrew | İbanoğlu, Şenol
The effect of different levels of feed moisture (12-17%) during extrusion cooking, using a co-rotating twin-screw extruder on selected nutritional and physical properties of extruded products was investigated. Four different formulations were used based on wheat flour and corn starch with the addition of 10% brewer's spent grain (BSG) and red cabbage (RC) trimming reducing the flour and starch. The samples were: wheat flour+BSG (WBSG), corn starch+BSG (CBSG), wheat flour+red cabbage (WRC) and corn starch+red cabbage (CRC). Process conditions utilised were: constant feed rate of 25kg/h, screw speed 200rpm and barrel temperature of 80 and 120°C. The results indicated that increasing the water feed to 15% increased the level of total dietary fibre (TDF) in all the extrudates while extrusion processing increased the level of TDF in WBSG, CBSG and CRC but decreased in WRC products. Extrusion cooking increased the level of total antioxidant capacity (TAC) and total phenolic compounds (TPC) in WRC and CRC. In addition to water feed level affecting the TDF of the extrudates, also affected were the expansion ratio, bulk density, hardness, WSI, SME and colour. The protein level of the products and hardness of extrudates were related to the different formulations.
显示更多 [+] 显示较少 [-]Evaluation of dairy food processing wash water solids as a protein source. II. Microbial protein synthesis, duodenal nitrogen flow, and small intestinal amino acid disappearance
1991
Caton, J.S. | Williams, J.E. | May, T. | Belyea, R.L. | Beaver, E.E. | Tumbleson, M.E.
Twelve ruminally, duodenally, and ileally-cannulated Hereford heifers (average initial BW 313 +/- 20 kg) were used in a replicated experiment to evaluate dairy food processing wash water solids (WWS) as a protein source. Heifers were fed 2.8 kg of chopped (7.6 cm) hay and one of three supplements (1.5 kg/d, DM basis). Supplements were formulated to be similar in energy and contained 1.0 (control), 23.2 (WWS), and 21.6% (soybean meal; SBM) CP on an OM basis. Total N and nonammonia N entering the duodenum (g/d) were greater (P <. 10) for heifers fed WWS and SBM supplements than for controls. Bacterial N flow (g/d) at the duodenum was less (P < .10) for controls (43.9) than for WWS- (63.9) and SBM- (69.9) supplemented heifers. Feed escape N (g/d) was greater (P < .10) for WWS-fed heifers than for those fed SBM (32.1 vs 20.7 g/d, respectively). Total tract N digestion (g/d) was greatest (P < .10) for SBM, intermediate for WWS, and least for control heifers. Microbial protein synthesis (g/kg of OM intake) was enhanced (P < .10) by WWS and SBM supplementation, but efficiency of synthesis (g/kg of OM fermented) did not differ among treatments. Essential amino acid (AA) disappearance in the small intestine (g/d) was less (P < .10) for control than for the other two treatments. Nonessential AA disappearance was greatest (P < .10) for the WWS and least (P < .10) for the control treatment. Based on our short-term feeding data, WWS can be used as a protein source for ruminants, but N availability of WWS seems less than that of soybean meal.
显示更多 [+] 显示较少 [-]Evaluation of dairy food processing wash water solids as a protein source. I. Forage intake, animal performance, ruminal fermentation, and site of digestion in heifers fed medium-quality hay
1991
Caton, J.S. | Williams, J.E. | May, T. | Beaver, E.E. | Belyea, R.L.
Twelve ruminally, duodenally, and ileally cannulated (average initial BW 313 +/- 20 kg) and 27 intact Hereford heifers (average initial BW 256 +/- 17 kg) were used in two experiments to evaluate dairy food wash water solids (WWS) as a protein source in medium-quality hay diets. Heifers received a basal diet of orchardgrass hay (7.4% CP) and were assigned to one of three supplement treatments: control (C;.9% CP), WWS (18.8% CP)-, and soybean meal (SBM 19.1% Cp)-based supplements (fed at 1.5 kg of DM/d). Supplements were formulated to have similar ME concentrations. Ruminal ammonia concentrations were greater (P <.10) for WWS- and SBM-supplemented heifers than for C heifers at most sampling times. Moreover, WWS and SBM increased (P < .10) total VFA (mM) and acetate (mol/100 mol) and lowered propionate (mol/100 mol) at several sampling times. Ruminal fluid volume (liters) was unchanged (P > .10) by treatment; however, fluid dilution and flow rate (liters/h) were less (P < .10) in C heifers than in heifers fed SBM or WWS supplements. Wash water solids and SBM supplementation increased (P < .10) OM, NDF, and ADF digestibilities compared with C heifers. Feeding WWS and SBM supplements increased BW at 84 d (P < .10) compared with C-supplemented heifers. Forage intake at 54 and 84 d by heifers supplemented with SBM or WWS was greater (P < .10) than by C heifers. Control-supplemented heifers had the least, WWS intermediate, and SBM the greatest ADG at 84 d (P < .10; .14 vs .35 vs .48 kg/d, respectively). These data indicate that WWS may be used as a protein source without serious adverse effects in heifers consuming medium-quality hay for 84 d.
显示更多 [+] 显示较少 [-]