细化搜索
结果 1-10 的 89
Irrigation water and food safety
2006
Biavati, B. | Mattarelli, P.
Seventy-one percent of the earth surfaces is covered by oceans. Water therefore is an important habitat for microorganisms and the other living beings. A consistent microbial biodiversity is present in water from phototrophs to chemioorganotrophs. The complex relationships between different microorganisms and the environment are often modified by organic, chemical and physic contaminations. The input of organic material can determine pathogenic pollution. The presence of pathogens has to be monitored to eliminate serious problems for animal and human health. Water, in fact, can be a vehicle direct (drinking water) or indirect (irrigation water) for microbial pathogens | Il 71% della superficie terrestre è costituito dagli oceani. L'acqua pertanto è un importante ambiente per i microrganismi, oltre che per tutti gli altri esseri viventi. Una grande varietà di tipi microbici colonizzano l'habitat acquatico, dai fototrofi ai chemiorganotrofi. Le dinamiche che si creano fra i diversi componenti microbici e l'ambiente sono spesso alterate da contaminazioni organiche, chimiche e fisiche. L'immissione di materiale organico può anche essere fonte di inquinamento di microrganismi patogeni la cui presenza va monitorata al fine di evitare seri problemi alla salute umana e animale. L'acqua, infatti, può rappresentare un veicolo di trasferimento, sia diretto (acqua potabile), sia indiretto (acque di irrigazione), di microrganismi patogeni
显示更多 [+] 显示较少 [-]Water for food systems and nutrition. Food Systems Summit Brief
2021
Ringler, C. | Agbonlahor, M. | Baye, K. | Barron, J. | Hafeez, Mohsin | Lundqvist, J. | Meenakshi, J. V. | Mehta, L. | Mekonnen, D. | Rojas-Ortuste, F. | Tankibayeva, A. | Uhlenbrook, Stefan
Water for food systems and nutrition 全文
2023
Ringler, Claudia | Agbonlahor, Mure Uhunamure | Baye, Kaleab | Barron, Jennie | Hafeez, Mohsin | Lundqvist, Jan | Meenakshi, J.V. | Mehta, Lyla | Mekonnen, Dawit | Rojas Ortuste, Franz | Tankibayeva, Aliya | Uhlenbrook, Stefan
Access to sufficient and clean freshwater is essential for all life. Water is also essential for the functioning of food systems: as a key input into food production, but also in processing and preparation, and as a food itself. Water scarcity and pollution are growing, affecting poorer populations most, and particularly food producers. Malnutrition levels are also on the rise, and this is closely linked to water scarcity. The achievement of Sustainable Development Goals (SDG) 2 and 6 are co-dependent. Solutions for jointly improving food systems and water security outcomes include: (1) strengthening efforts to retain water-based ecosystems and their functions; (2) improving agricultural water management for better diets for all; (3) reducing water and food losses beyond the farmgate; (4) coordinating water with nutrition and health interventions; (5) increasing the environmental sustainability of food systems; (6) explicitly addressing social inequities in water-nutrition linkages; and (7) improving data quality and monitoring for water-food system linkages, drawing on innovations in information and communications technology (ICT). Climate change and other environmental and societal changes make the implementation and scaling of solutions more urgent than ever.
显示更多 [+] 显示较少 [-]Water for food systems and nutrition 全文
2023
Ringler, Claudia | Agbonlahor, Mure | Baye, Kaleab | Barron, Jennie | Hafeez, Mohsin | Lundqvist, Jan | Meenakshi, J.V. | Mehta, Lyla | Mekonnen, Dawit | Rojas Ortuste, Franz | Tankibayeva, Aliya | Uhlenbrook, Stefan
Dioxin contamination of food and water
1989
Agri-Food System Water Use Database 全文
2023
International Food Policy Research Institute
This database provides information about the amount of water use in agriculture food systems covering all sectors from farming to food processing industries. The data are presented at the country level with sectoral disaggregation following the Nexus Social Accounting Matrix (SAM) sectoral specifications. The database also differentiates the type of water in each sector based on water sources. The green water refers to type of water originated from precipitation or rain, while the blue water refers to all water that comes from irrigation covering both surface and groundwater. Both types of water are consumed by plants or animals during the production process. The grey water on the other hand is the amount of water generated as an implication from production activities that cause the water polluted. Since it has loads of pollutants created from production activities, this type of water can be seen as a waste in the whole production system.
显示更多 [+] 显示较少 [-]Food and water safety (ADA timely statement)
1990
ADA supports the need for continued communication regarding food and water safety from government agencies and the food industry. The ADA also supports increased research regarding food and water safety issues, public education on food and water safety, legislative changes to ensure a safe and adequate food supply, and development of disease-resistant strains and alternative approaches to pest control.
显示更多 [+] 显示较少 [-]Global handbook on food and water safety
2003
De Leon, Sonia Yuson | Meacham, Susan L. | Claudio, Virginia Serraon
"This book is a reference on food and water safety that will be useful for food managers, trainers/educators, food handlers, and consumers worldwide. The first two chapters emphasize the importance of food and water safety on health and life maintenance. Each chapter has an introductory paragraph that states the objective and scope of the chapter text. | Definitions of useful terms, tables, and illustrations serve to make the key points better understood and easier to remember. Review questions at the end of each chapter enhance the learning experience, and the chapter references will give the reader a chance to delve into areas of interest for further information. A unique feature of this book is the segment on foodborne disease outbreaks. | A selection of fifty cases are presented that provide important learning tools for problem-solving and evaluating foodborne illnesses. Water safety is explained in great detail, whether it is used for drinking and cooking or in recreational water facilities. | Numerous examples of etiologic agents that cause illness from contaminated food and water are discussed. Guidelines to supply safe food and water for emergencies that include preparedness in case of bioterrorism, power outage, floods, hurricanes, and other disasters are given. Practical guidelines about food and water safety when handling foods throughout the food chain are explored in each chapter. | In addition, a glossary of terms commonly used in food and water safety, with cross-references to the chapter contents, is included. In light of global trade and increasing cultural diversity in food consumption, this book also deals with challenges for the future to ensure a safe water and food supply."--Jacket.
显示更多 [+] 显示较少 [-]The poisons around us
1974
Schroeder, Henry Alfred
Arsenic Exposure via Contaminated Water and Food Sources 全文
2022
Khusravī Dārānī, Kiyānūsh | Rehman, Yasir | Katsoyiannis, Ioannis A. | Kokkinos, Evgenios | Zouboulis, Anastasios I.
Arsenic poisoning constitutes a major threat to humans, causing various health problems. Almost everywhere across the world certain “hotspots” have been detected, putting in danger the local populations, due to the potential consumption of water or food contaminated with elevated concentrations of arsenic. According to the relevant studies, Asia shows the highest percentage of significantly contaminated sites, followed by North America, Europe, Africa, South America and Oceania. The presence of arsenic in ecosystems can originate from several natural or anthropogenic activities. Arsenic can be then gradually accumulated in different food sources, such as vegetables, rice and other crops, but also in seafood, etc., and in water sources (mainly in groundwater, but also to a lesser extent in surface water), potentially used as drinking-water supplies, provoking their contamination and therefore potential health problems to the consumers. This review reports the major areas worldwide that present elevated arsenic concentrations in food and water sources. Furthermore, it also discusses the sources of arsenic contamination at these sites, as well as selected treatment technologies, aiming to remove this pollutant mainly from the contaminated waters and thus the reduction and prevention of population towards arsenic exposure.
显示更多 [+] 显示较少 [-]