细化搜索
结果 1-4 的 4
Cereal protein-based nanoparticles as agents stabilizing air–water and oil–water interfaces in food systems 全文
2019
Wouters, Arno GB | Delcour, Jan A.
There has been a recent surge of interest in the use of food-grade nanoparticles (NPs) for stabilizing food foams and emulsions. Cereal proteins are a promising raw material class to produce such NPs. Studies thus far have focused mostly on wheat gliadin and maize zein-based NPs. The former are effective interfacial stabilizing agents, while the latter due to their high hydrophobicity generally result in poor interfacial stability. Several strategies to modify the surface properties of wheat gliadin and maize zein NPs have been followed. In many instances, this resulted in improved foam or emulsion stability. Nonetheless, future efforts should be undertaken to gain fundamental insights in the interfacial behavior of NPs, to further explore NP surface modification strategies, and to validate the use of NPs in actual food systems.
显示更多 [+] 显示较少 [-]Novel water-resistant UV-activated oxygen indicator for intelligent food packaging 全文
2013
Vu, Chau Hai Thai | Won, Keehoon
For the first time, alginate polymer has been applied to prevent dyes from leaching out of colorimetric oxygen indicator films, which enable people to notice the presence of oxygen in the package in an economic and simple manner. The dye-based oxygen indicator film suffers from dye leaching upon contact with water. In this work, UV-activated visual oxygen indicator films were fabricated using thionine, glycerol, P25 TiO2, and zein as a redox dye, a sacrificial electron donor, UV-absorbing semiconducting photocatalyst, and an encapsulation polymer, respectively. When this zein-coated film was immersed in water for 24h, the dye leakage was as high as 80.80±0.45%. However, introduction of alginate (1.25%) as the coating polymer considerably diminished the dye leaching to only 5.80±0.06%. This is because the ion-binding ability of alginate could prevent the cation dye from leaching into water. This novel water-resistant UV-activated oxygen indicator was also successfully photo-bleached and regained colour fast in the presence of oxygen.
显示更多 [+] 显示较少 [-]Improved water resistance inedible zein films and composites for biodegradable food packaging
1995
Yamada, K. | Takahashi, H. | Noguchi, A.
Zein, corn prolamine, was dissolved in several organic solvents to make films and their properties were examined. Ethanol with 20% water and acetone with 30% water were found to dissolve zein well and transform it into a transparent flexible film after moderate drying. Both films showed similar breaking strength to that of commercial thin film of polyvinylidene chloride for food use and were digested with proteases. Only the film prepared from acetone solution showed a relatively low water permeability. This water permeation was found to depend strongly on the rate of diffusion. 1,2-Epoxy-3-chloropropane (ECP) was added into the acetone solution to cross-link the zein molecules for the purpose of improving the breaking strength and water-resistant properties of the film. Alpha-chymotrypsin was found to digest the film even after the modification with ECP. However, this cross-linking resulted in little improvement in the water-resistant properties of the film and also reduced its flexibility.
显示更多 [+] 显示较少 [-]Electrospinning of zein-ethyl cellulose hybrid nanofibers with improved water resistance for food preservation 全文
2020
Niu, Ben | Zhan, Li | Shao, Ping | Xiang, Ning | Sun, Peilong | Chen, Hangjun | Gao, Haiyan
Zein electrospun nanofibers have poor water resistance, which restricts its applications in food preservation. To improve the water resistance of nanofibers, zein/ethyl cellulose (EC) hybrid nanofibers were prepared at different ratios. Besides, we also encapsulated cinnamon essential oil (CEO) into electrospun fibers for Agaricus bisporus preservation. As the weight ratio of EC increased from 0% (ZE-10) to 100% (ZE-01), the viscosity of electrospinning solutions gradually increased from 80.33 ± 19.23 mPa·s to 756.78 ± 22.48 mPa·s, resulting in sufficient chain entanglement for the preparation of uniform fibers. The average diameters of ZE-01, ZE-12, ZE-11, ZE-21, and ZE-10 nanofibers were 326 ± 53 nm, 267 ± 31 nm, 237 ± 51 nm, 292 ± 45 nm, and 362 ± 70 nm, respectively. The hydrogen bonds between the hydroxyl groups of ethyl cellulose and the amino groups of zein decreased the amount of free hydrophilic group, thus improving water resistance of nanofibers. Food packaging potential was evaluated using Agaricus bisporus. The zein/EC nanofibers loaded CEO significantly decreased weight loss and maintained the firmness of the Agaricus bisporus, and improved the quality of the Agaricus bisporus during storage.
显示更多 [+] 显示较少 [-]