细化搜索
结果 1-10 的 18
Ecological Influences of Water-Level Fluctuation on Food Web Network 全文
2021
Que, Yanfu | Xie, Jiayi | Xu, Jun | Li, Weitao | Wang, Ezhou | Zhu, Bin
Seasonal water-level fluctuations may lead to changes in river nutrients, which causes corresponding changes in the trophic structure of an aquatic food web, and finally affects the whole ecosystem. In this study, we focused on the Ganjing River, a tributary of the Yangtze River, China. Common organisms were sampled and measured for carbon and nitrogen stable isotopes in the wet and dry seasons, respectively, and the relative contributions of different food sources were combined to construct the food web, so as to realize the influence of water-level fluctuation on aquatic food web. Our results showed that basal food sources for fish consumers were endogenous carbon sources such as POM, zooplankton and zoobenthos in the dry season, while high water level exposed fish to more diverse and abundant food sources, and the contribution proportions of exogenous carbon sources (e.g., terrestrial detritus) to consumers increased in the wet season. In parallel, the abundance and species diversity of fish were higher than those in the dry season. Most fish species had relatively higher trophic levels in the dry season compared to the wet season, because the increase in fish densities led to an increase in piscivores fish. The food web was composed of planktonic and benthic food chains in the dry season. During the wet season, the planktonic food chain was dominant, followed by the herbivorous food chain, and the benthic food chain was relatively less important. Therefore, water-level fluctuation may alter the trophic linkages within fish communities, which contributed to a more complex and interconnected food web. Moreover, as we expect, the stable isotope analysis food web was broadly in line with the gut content analysis food web.
显示更多 [+] 显示较少 [-]Food quality for Daphnia in humic and clear water lakes 全文
2007
GUTSEIT, KELLY | BERGLUND, OLOF | GRANÉLI, WILHELM
1. Growth and reproduction of Daphnia fed lake seston were measured in two categories of meso- to eutrophic lakes differing with respect to terrestrial organic matter influence (humic and clear water lakes). The content of highly unsaturated fatty acids (HUFA), P and N, as well as the taxonomical composition of seston were analysed. 2. Seston HUFA and C : P ratios were similar between lake categories, whereas C : N ratios were lower in the clear water lakes in both spring and summer. Despite the similarity in HUFA and P content of seston, Daphnia growth rate, clutch size and the proportion of gravid females were, respectively, about 1.5, 3 and 6 times higher in the clear water lakes. 3. Differences in growth and reproduction were related to a combination of higher N content and good fatty acid quality of the seston in the clear water lakes. Relatively high biomass of edible algae, such as Rhodomonas sp. and Cryptomonas sp., in the clear water lakes, and differences in water pH likely contributed to the observed differences in Daphnia growth and reproduction between lake categories. Additionally, it is possible that Daphnia was energy limited in the humic lakes despite high particulate organic carbon (POC) concentrations, as the contribution of non-algal and detrital C to the POC pool was high. 4. Our results suggest that dietary HUFA content has the potential to improve herbivore growth and reproduction if N and P are not limiting. N merits more attention in studies of zooplankton nutrition.
显示更多 [+] 显示较少 [-]Nutrient removal from polluted stream water by artificial aquatic food web system 全文
2009
Jung, Dawoon | Cho, Ahnna | Zo, Young-Gun | Choi, Seung-Ik | An, Tʻae-sŏk
For the removal of nutrients from eutrophic stream water polluted by non-point sources, an artificial aquatic food web (AAFW) system comprising processes of phytoplankton growth and Daphnia magna grazing was developed. The AAFW system was a continuous-flow system constructed with one storage basin of 3 m³ capacity, one phytoplankton tank of 3 m³ capacity, and one zooplankton growth chamber of 1.5 m³ capacity. The system was optimized by setting hydraulic retention time of phytoplankton tank as 3 days and D. magna density as 740-1000 individual l⁻¹. When the system was operated on eutrophic stream water that was delivering 471 g of total nitrogen (TN) and 29 g of total phosphorus (TP) loadings for 45 days, 250 g (53%) of TN and 16 g (54%) of TP were removed from the water during its passage through the phytoplankton tank. In addition, 64 g (14%) of TN and 4 g (13%) of TP were removed from the water by harvesting zooplankton biomass in the zooplankton growth chamber, resulting in significant overall removal rates of TN (69%), nitrate (78%), TP (73%), and dissolved inorganic phosphorus (94%). While the removal efficiency of the AAFW system is comparable to those of other ecotechnologies such as constructed wetlands, its operation is less limited by the availability of space or seasonal shift of temperature. Therefore, it was concluded that AAFW system is a highly efficient, flexible system for reducing nutrient levels in tributary streams and hence nutrient loading to large aquatic systems receiving the stream water.
显示更多 [+] 显示较少 [-][Sense the world: localization of food, mate and enemy in water fleas]
2000
Kioerboe, T.
Cabled ocean observatory data reveal food supply mechanisms to a cold-water coral reef 全文
2019
Van Engeland, Tom | Godø, Olav Rune | Johnsen, Espen | Duineveld, Gerard C.A. | van Oevelen, Dick
We investigated food supply mechanisms to a cold-water coral (CWC) reef at 260 m depth on the Norwegian continental shelf using data from a cabled ocean observatory equipped with Acoustic Doppler Current Profilers (ADCPs), an echosounder, and sensors for chlorophyll, turbidity and hydrography in the benthic boundary layer (BBL). Tidal currents of up to tens of cm s−1 dominated BBL hydrodynamics while residual currents were weak (∼10 cm s−1), emphasizing a supply and high retention of locally produced phytodetritus within the trough. A direct connection between the reefs and surface organic matter (OM) was established by turbulent mixing and passive particle settling, but relative contributions varied seasonally. Fresh OM from a spring-bloom was quickly mixed into the BBL, but temperature stratification in summer reduced the surface-to-bottom connectivity and reduced the phytodetritus supply. A qualitative comparison among acoustic backscatter in the ADCPs (600 kHz, 190 kHz) and echosounder (70 kHz) suggests that vertically migrating zooplankton may present an alternative food source in summer. Nocturnal feeding by zooplankton in the upper water column sustains downward OM transport independent from water column mixing and may dominate as food supply pathway over sedimentation of the phytodetritus, especially during stratified conditions. In addition, it could present a concentrating mechanism for nutritional components as compensation for the deteriorating phytodetritus quality. Overall, the observed patterns suggest seasonal changes in the food supply pathways to the reef communities. The moderating role of temperature stratification in phytodetritus transport suggests stronger dependence of the cold-water corals on zooplankton for their dietary requirements with increased stratification under future climate scenarios. This study demonstrates the added value of permanent ocean observatories to research based on dedicated campaigns and regular monitoring.
显示更多 [+] 显示较少 [-]The food of common bream (Abramis brama L.) in a biomanipulated water supply reservoir 全文
2012
Zapletal, T., Mendelova Univ., Brno (Czech Republic). Ustav Zoologie, Rybarstvi, Hydrobiologie a Vcelarstvi | Mares, J., Mendelova Univ., Brno (Czech Republic). Ustav Zoologie, Rybarstvi, Hydrobiologie a Vcelarstvi | Jurajda, P., Akademie Ved, Brno (Czech Republic). Ustav Biologie Obratlovcu | Vsetickova, L., Akademie Ved, Brno (Czech Republic). Ustav Biologie Obratlovcu
Food composition of Abramis brama was studied in the shallow, meso-eutrophic Hamry reservoir (Czech Republic). Fish were sampled during the daytime in the pre-spawning period (April), the post-spawning (June), summer (July) and autumn (October) in 2011. The bream sampled comprised two main size groups: small (124-186 mm) and large (210-315 mm) standard length. Twenty specimens of each size group (except April - 40 large fish) were taken for analysis on each sampling occasion. Food composition was evaluated using gravimetric methods. Over the whole season, detritus and aquatic vegetation were the dominant dietary items taken. During summer, the diet of large bream comprised mainly aquatic vegetation. Benthic macroinvertebrates and zooplankton formed a minor part of bream diet over the whole season. Specific food habits of bream could be explained by specific conditions within the reservoir and available food resources.
显示更多 [+] 显示较少 [-]Daphnia Magna Fitness During Low Food Supply Under Different Water Temperature and Brownification Scenarios 全文
2016
GALL, Andrea | Kainz, Martin J. | RASCONI, Serena
Much of our current knowledge about non-limiting dietary carbon supply for herbivorous zooplankton is based on experimental evidence and typically conducted at ~1 mg C L–¹ and ~20°C. Here we ask how low supply of dietary carbon affects somatic growth, reproduction, and survival of Daphnia magna and test effects of higher water temperature (+3°C relative to ambient) and brownification (3X higher than natural water color; both predicted effects of climate change) during fall cooling. We predicted that even at very low carbon supply (~5µg C L–¹), higher water temperature and brownification will allow D. magna to increase its fitness. Neonates (<24 h old) were incubated with lake seston for 4 weeks (October-November 2013) in experimental bottles submerged in outdoor mesocosms to explore effects of warmer and darker water. Higher temperature and brownification did not significantly affect food quality, as assessed by its fatty acid composition. Daphnia exposed to both increased temperature and brownification had highest somatic growth and were the only that reproduced, and higher temperature caused the highest Daphnia survival success. These results suggest that even under low temperature and thus lower physiological activity, low food quantity is more important than its quality for D. magna fitness.
显示更多 [+] 显示较少 [-]Grazing Potential—A Functional Plankton Food Web Metric for Ecological Water Quality Assessment in Mediterranean Lakes 全文
2019
Stamou, Georgia | Katsiapi, Matina | Moustaka-Gouni, Maria | Michaloudi, Evangelia
Grazing potential (GP, in % day−1) was estimated for the plankton communities of 13 Greek lakes covering the trophic spectrum, in order to examine its sensitiveness in discriminating different classes of ecological water quality. Lakes with high GP values exhibited high zooplankton biomass dominated by large cladocerans or/and calanoids while lakes with low GP values had increased phytoplankton biomass and/or domination of small-bodied zooplankton indicating intensive fish predation. GP successfully distinguished among ecological water quality classes (estimated using the phytoplankton water quality index PhyCoI) indicating its potential use as a metric for ecological water quality assessment. As a next step, PhyCoI index was modified to include GP as a metric in order to enhance the phytoplankton-based ecological status classification of lakes incorporating zooplankton as a supporting factor. The PhyCoI<inf>GP</inf> successfully assessed the ecological water quality in accordance with PhyCoI classification whereas it was significantly correlated with the eutrophication proxy TSI<inf>SD</inf> based on Secchi Depth. Thus, we propose to use the modified phytoplankton index PhyCoI<inf>GP</inf> for monitoring the ecological water quality of lakes.
显示更多 [+] 显示较少 [-]Grazing Potential—A Functional Plankton Food Web Metric for Ecological Water Quality Assessment in Mediterranean Lakes 全文
2019
Georgia Stamou | Matina Katsiapi | Maria Moustaka-Gouni | Evangelia Michaloudi
Grazing potential (GP, in % day<sup>−1</sup>) was estimated for the plankton communities of 13 Greek lakes covering the trophic spectrum, in order to examine its sensitiveness in discriminating different classes of ecological water quality. Lakes with high GP values exhibited high zooplankton biomass dominated by large cladocerans or/and calanoids while lakes with low GP values had increased phytoplankton biomass and/or domination of small-bodied zooplankton indicating intensive fish predation. GP successfully distinguished among ecological water quality classes (estimated using the phytoplankton water quality index PhyCoI) indicating its potential use as a metric for ecological water quality assessment. As a next step, PhyCoI index was modified to include GP as a metric in order to enhance the phytoplankton-based ecological status classification of lakes incorporating zooplankton as a supporting factor. The PhyCoI<sub>GP</sub> successfully assessed the ecological water quality in accordance with PhyCoI classification whereas it was significantly correlated with the eutrophication proxy TSI<sub>SD</sub> based on Secchi Depth. Thus, we propose to use the modified phytoplankton index PhyCoI<sub>GP</sub> for monitoring the ecological water quality of lakes.
显示更多 [+] 显示较少 [-]Rice-shrimp ecosystems in the Mekong Delta: Linking water quality, shrimp and their natural food sources 全文
2020
Leigh, Catherine | Stewart-Koster, Ben | Sang, Nguyen Van | Truc, Le Van | Hiep, Le Huu | Xoan, Vo Bich | Tinh, Nguyen Thi Ngoc | An, La Thuy | Sammut, Jesmond | Burford, Michele A.
Aquatic ecosystems are used for extensive rice-shrimp culture where the available water alternates seasonally between fresh and saline. Poor water quality has been implicated as a risk factor for shrimp survival; however, links between shrimp, water quality and their main food source, the natural aquatic biota inhabiting these ponds, are less well understood. We examined the aquatic biota and water quality of three ponds over an entire year in the Mekong Delta, Vietnam, where the growing season for the marine shrimp Penaeus monodon has been extended into the wet season, when waters freshen. The survival (30–41%) and total areal biomass (350–531 kg ha⁻¹) of shrimp was constrained by poor water quality, with water temperatures, salinity and dissolved oxygen concentrations falling outside known optimal ranges for several weeks. Declines in dissolved oxygen concentration were matched by declines in both shrimp growth rates and lipid content, the latter being indicative of nutritional condition. Furthermore, as the dry season transitioned into the wet, shifts in the taxonomic composition of phytoplankton and zooplankton were accompanied by declines in the biomass of benthic algae, an important basal food source in these systems. Densities of the benthic invertebrates directly consumed by shrimp also varied substantially throughout the year. Overall, our findings suggest that the survival, condition and growth of shrimp in extensive rice-shrimp ecosystems will be constrained when poor water quality and alternating high and low salinity negatively affect the physiology, growth and composition of the natural aquatic biota. Changes in management practices, such as restricting shrimp inhabiting ponds to the dry season, may help to address these issues and improve the sustainable productivity and overall condition of these important aquatic ecosystems.
显示更多 [+] 显示较少 [-]