细化搜索
结果 131-140 的 416
System dynamic relationship between service water and food: Case study at Jinghe River Basin 全文
2022
Water resources and food are the most important and basic resources for human beings and society. In recent decades, due to the growth of global population and economy, water resources and food shortages have become a global resource problem. Under this background, the significance of exploring the relationship between water-food in ecosystem services becomes more and more prominent. In view of this, this study used the SWAT model and the spatialized food production model to quantitatively evaluate the supply, demand, and supply-demand ratio of water and food production in the Jinghe River Basin in 2020, and built a system dynamics model of the watershed ecosystem services to simulate the coupling of water and food. According to the socio-economic conditions, nine different population economic development scenarios were set up to simulate the development of the water-food relationship between the ecosystem services of the river basin in 2030. The results showed that ① the spatial differences in water supply-demand ratio and food self-sufficiency rate in Jinghe River Basin in 2020 were obvious, and the supply-demand ratio in the upper reaches of the basin was significantly higher than that in the lower reaches. ② Through model simulations of three water supply-demand ratios and three food self-sufficiency rates, it was found that the water supply-demand ratios and food self-sufficiency rates showed obvious synergistic relationships both in time and in spatial distribution. ③ Under nine economic and demographic development scenarios, the optimal simulation effect was achieved under scenario E1P3 for both water-food supply and demand in the Jinghe River Basin in 2030. That was, when the economy and population develop in opposite directions, the supply-demand ratio of the two achieved the best simulation effect. The results provided a scientific basis for the sustainable development of water-food relationship in Jinghe River Basin in the future.
显示更多 [+] 显示较少 [-]Tradeoffs and Synergies Across Global Climate Change Adaptations in the Food-Energy-Water Nexus 全文
2022
Torhan, S | Grady, C A | Ajibade, I | Galappaththi, E K | Hernandez, R R | Musah-Surugu, J I | Nunbogu, A M | Segnon, A C | Shang, Y | Ulibarri, N | Campbell, D | Joe, E T | Penuelas, J | Sardans, J | Shah, M A R | Team, G A M
Food-energy-water (FEW) systems are increasingly vulnerable to natural hazards and climate change risks, yet humans depend on these systems for their daily needs, wellbeing, and survival. We investigated how adaptations related to FEW vulnerabilities are occurring and what the global community can learn about the interactions across these adaptations. We conducted a global analysis of a data set derived from scientific literature to present the first large scale assessment (n = 1,204) of evidence-based FEW-related climate adaptations. We found that the most frequently reported adaptations to FEW vulnerabilities by continent occurred in Africa (n = 495) and Asia (n = 492). Adaptations targeting food security were more robustly documented than those relevant to water and energy security, suggesting a greater global demand to address food security. Determining statistically significant associations, we found a network of connections between variables characterizing FEW-related adaptations and showed interconnectedness between a variety of natural hazards, exposures, sectors, actors, cross-cutting topics and geographic locations. Connectivity was found between the vulnerabilities food security, water, community sustainability, and response to sea level rise across cities, settlements, and key infrastructure sectors. Additionally, generalized linear regression models revealed potential synergies and tradeoffs among FEW adaptations, such as a necessity to synergistically adapt systems to protect food and water security and tradeoffs when simultaneously addressing exposures of consumption and production vs. poverty. Results from qualitative thematic coding showcased that adaptations documented as targeting multiple exposures are still limited in considering interconnectivity of systems and applying a nexus approach in their responses. These results suggest that adopting a nexus approach to future FEW-related adaptations can have profound benefits in the management of scarce resources and with financial constraints.
显示更多 [+] 显示较少 [-]Wageningen Research Theme Activity Plan 2023 and 2024 : Food Security and Valuing Water Programme
2022
Demmers, I.M.A.A.
On the role of water resources management to transform water, energy, food and ecosystem (WEFE) systems in transboundary river basins [Abstract only]
2022
Uhlenbrook, Stefan | Ringler, C. | Lautze, Jonathan | McCartney, Matthew | Hafeez, Mohsin
On the role of water resources management to transform water, energy, food and ecosystem (WEFE) systems in transboundary river basins [Abstract only] 全文
2022
Uhlenbrook, Stefan | Ringler, Claudia | Lautze, Jonathan F. | McCartney, Matthew P. | Hafeez, Mohsin
The program NEXUS Gains addresses key challenges of transforming water, energy, food and ecosystem (WEFE) systems in transboundary bread-basket basins in East and Southern Africa (Blue Nile and Limpopo basins), Central (Aral Sea basin) and South Asia (Ganges and Indus basin) in a changing world. The program particularly explores water resource management options to understand WEFE system interdependencies, trade-offs and synergies and develop more sustainable development pathways for all members society. The presentation will discuss alternative interventions to increase water productivity different sectors (irrigation, forestry, industries) across scales ranging from farm to watershed to river basin scales. Therefore, particular attention will be given to integrated water storage management in human built and natural infrastructure in South Asia and East Africa. The implications for hydrological process and water resources dynamics and wider environmental, social and economic systems are analyzed and related policy implications are discussed considering also climate change.
显示更多 [+] 显示较少 [-]On the role of water resources management to transform water, energy, food and ecosystem (WEFE) systems in transboundary river basins [Abstract only] 全文
2022
Uhlenbrook, Stefan | Ringler, Claudia | Lautze, Jonathan F. | McCartney, Matthew P. | Hafeez, Mohsin
The program NEXUS Gains addresses key challenges of transforming water, energy, food and ecosystem (WEFE) systems in transboundary bread-basket basins in East and Southern Africa (Blue Nile and Limpopo basins), Central (Aral Sea basin) and South Asia (Ganges and Indus basin) in a changing world. The program particularly explores water resource management options to understand WEFE system interdependencies, trade-offs and synergies and develop more sustainable development pathways for all members society. The presentation will discuss alternative interventions to increase water productivity different sectors (irrigation, forestry, industries) across scales ranging from farm to watershed to river basin scales. Therefore, particular attention will be given to integrated water storage management in human built and natural infrastructure in South Asia and East Africa. The implications for hydrological process and water resources dynamics and wider environmental, social and economic systems are analyzed and related policy implications are discussed considering also climate change.
显示更多 [+] 显示较少 [-]Performance evaluation of high-temperature heat pump systems for hot water and steam generation in food processing | Performance evaluation of high-temperature heat pump systems for hot water and steam generation in food processing 全文
2022
Ren, Shuai | Ahrens, Marcel Ulrich | Hafner, Armin | Widell, Kristina Norne
A large amount of fossil fuels is consumed for hot water and steam generation in food processes such as smoking, scalding, drying, pasteurization, sterilization, cleaning, and cooking, which currently rises both economic- and environmental concerns. At the same time, there is a considerable number of low-grade waste heat available, often from associated cooling processes. High-temperature heat pumps (HTHPs) are considered as a promising solution for steam boilers replacement and waste heat recovery owing to their high energy efficiency and sustainability. In the present study, the performance of three heat pump systems — a trans-critical CO2 heat pump system, a cascade propane-butane heat pump system and an ammonia-water absorption-compression heat pump (ACHP) system, for hot water and steam production in food processing is evaluated based on different application scenarios. In all the scenarios and temperature lift levels, the ACHP exhibits the best thermal performance with moderate pressure levels and low-pressure ratios. When applying the ACHP for both the cleaning and cooking processes, the achievable energy saving rate can reach 79%. Further, the optimal HTHP system architectures for different application scenarios are discussed. | acceptedVersion
显示更多 [+] 显示较少 [-]Research on the competitive and synergistic evolution of the water-energy-food system in China 全文
2022
Sun, Caizhi | Hao, Shuai
Water, energy, and food are essential and strategic resources for human well-being and socio-economic development and form the water-energy-food (WEF) system with competition and synergy. The competitive and synergistic evolution model was developed to remedy the limitations in quantitatively analyzing the tradeoffs and synergies of the WEF system. Firstly, an assessment model was developed for measuring the synergy and competition of the WEF system based on the order degree of each subsystem (That is, the development degree of each subsystem) and synergy theory. Then the synergy evolution model (SEM), with the help of a logistic model and accelerated genetic algorithm (AGA) model, was developed to measure and identify the steady-state. Furthermore, an empirical study was conducted with 30 provinces in China as examples. The results indicated that the food subsystem had the highest average order degree (0.347), followed by the energy subsystem (0.305), and the water subsystem had the lowest (0.281). The degree of order of the three subsystems exhibited an upward trend in time and has differences in the spatial distribution. Also, the results showed that synergistic, restrictive, and competitive relationships exist within the WEF system. Areas with competitive and restrictive relationships are mainly located in South China and North China, respectively, within the relationship between the water and energy subsystems. The entire country showed a restrictive relationship between the water and food subsystems. The energy and food subsystems showed that the eastern regions with relationship, while the western regions with competitive and restrictive relationship. Finally, effective measures (e.g., optimize the industrial structure, continuing to implement the strategy of “storing grain in the land and technology”, and to hold the arable land minimum) are suggested to achieve the WEF system coordinated and sustainable development. We believe that the assessment model is also applicable to assess the other complex and dynamic system worldwide that involve multiple factors.
显示更多 [+] 显示较少 [-]Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging 全文
2022
Pasquier, Eva | Mattos, Bruno D. | Koivula, Hanna | Khakalo, Alexey | Belgacem, Mohamed Naceur | Rojas, Orlando J. | Bras, Julien
Natural biopolymers have become key players in the preparation of biodegradable food packaging. However, biopolymers are typically highly hydrophilic, which imposes limitations in terms of barrier properties that are associated with water interactions. Here, we enhance the barrier properties of biobased packaging using multilayer designs, in which each layer displays a complementary barrier function. Oxygen, water vapor, and UV barriers were achieved using a stepwise assembly of cellulose nanofibers, biobased wax, and lignin particles supported by chitin nanofibers. We first engineered several designs containing CNFs and carnauba wax. Among them, we obtained low water vapor permeabilities in an assembly containing three layers, i.e., CNF/wax/CNF, in which wax was present as a continuous layer. We then incorporated a layer of lignin nanoparticles nucleated on chitin nanofibrils (LPChNF) to introduce a complete barrier against UV light, while maintaining film translucency. Our multilayer design which comprised CNF/wax/LPChNF enabled high oxygen (OTR of 3 ± 1 cm³/m²·day) and water vapor (WVTR of 6 ± 1 g/m²·day) barriers at 50% relative humidity. It was also effective against oil penetration. Oxygen permeability was controlled by the presence of tight networks of cellulose and chitin nanofibers, while water vapor diffusion through the assembly was regulated by the continuous wax layer. Lastly, we showcased our fully renewable packaging material for preservation of the texture of a commercial cracker (dry food). Our material showed functionality similar to that of the original packaging, which was composed of synthetic polymers.
显示更多 [+] 显示较少 [-]Supply chain water-reporting practices in the food, beverage and tobacco sector: a comparative study 全文
2022
Botha, Marthinus Jacobus | Middelberg, Susanna Levina | Oberholzer, Merwe
Companies are responsible for reporting not only their own water practices but also those of their suppliers. An evaluation of the supply chain water information in the sustainability and integrated reports of 49 food, beverage and tobacco firms listed on the JSE (South Africa), ASX (Australia) and Dow Jones Sustainability Index (DJSI) exchanges, respectively, was conducted. It was found that the companies fall short in their disclosure of consumption of water-related supply chain information. The firms listed on the DJSI and JSE outperformed the Australian companies. This paper presents and applies a novel water disclosure index of supply chain information.
显示更多 [+] 显示较少 [-]