细化搜索
结果 251-260 的 5,572
Significance of water activity in food microbiology
1981
Bartl, V. (District Hygienic Station, Praha (Czechoslovakia). Hygienic Lab.)
Water-irrigation impact on world food production
1968
Houston, Clyde E.
Integrated food and water research for development 全文
Water, food and environment: a development dilemma 全文
A food-energy-water nexus meta-model for food and energy security 全文
2022
Ogbolumani, Omolola A. | Nwulu, Nnamdi I.
Optimal allocation of the food, energy and water (FEW) resources is of emergent concern owing to depleting supply of the natural resources. Increasing demand for the FEW resources is attributable to growing population, migration, economic development, technological advancements and climate change. The FEW nexus (FEW-N) is an intricate system that requires robust quantitative decision-making tools to investigate the links between the various system components and sustainability. This study proposes a meta-model-based FEW-N system for addressing the issue of natural resource allocation for food and energy security. It incorporated an integrated model consisting of the Techno-Economic and Input/Output models in an Optimisation framework with maximum economic benefit as its objective function. The COINOR Branch and Cut (CBC) and CPLEX solvers in the Advanced Interactive Multidimensional Modelling System (AIMMs) were used to formulate and solve the optimisation problems. To validate the developed framework, the scenario analysis was performed on three cases in South Africa. First, it was found that using FEW resources for food production in dryland open fields, undercover greenhouses, and irrigated open fields was more profitable than for production of electrical energy from bioenergy, solar/wind-based hybrid renewable energy, and hydropower production systems. Second, the revenue of the sub-sector determined the percentage use of the FEW resources and the percentage contribution of technology options to food and energy security. Third, open fields, greenhouses, and irrigated open fields contributed significantly to food security. The holistic framework developed provided enhanced understanding of the FEW-N system. Resource security has significantly improved due to the ability of various technologies in each subsector to meet the food and energy demands of the specific population. Besides providing scientific support for national decisions regarding food, energy, and water policy, the proposed framework will also contribute to sustainable development at the subnational level.
显示更多 [+] 显示较少 [-]Relationship between arsenic content of food and water applied for food processing 全文
2013
Sugár, Éva | Tatár, Enikő | Záray, Gyula | Mihucz, Victor G.
As part of a survey conducted by the Central Agricultural Office of Hungary, 67 food samples including beverages were taken from 57 food industrial and catering companies, 75% of them being small and medium-sized enterprises (SMEs). Moreover, 40% of the SMEs were micro entities. Water used for food processing was simultaneously sampled. The arsenic (As) content of solid food stuff was determined by hydride generation atomic absorption spectrometry after dry ashing. Food stuff with high water content and water samples were analyzed by inductively coupled plasma mass spectrometry. The As concentration exceeded 10μg/L in 74% of the water samples taken from SMEs. The As concentrations of samples with high water content and water used were linearly correlated. Estimated As intake from combined exposure to drinking water and food of the population was on average 40% of the daily lower limit of WHO on the benchmark dose for a 0.5% increased incidence of lung cancer (BMDL0.5) for As. Five settlements had higher As intake than the BMDL0.5. Three of these settlements are situated in Csongrád county and the distance between them is less than 55km. The maximum As intake might be 3.8μg/kg body weight.
显示更多 [+] 显示较少 [-]Agua en los alimentos 全文
2017
Arévalo Sáenz, Syumey Teresa
El presente trabajo es un resumen en que el agua, está presente en todo alimento, ya sea fruta, pescado, carnes rojas, verduras, hortalizas, alimentos líquidos y otros, así mismo este componente que está en porcentaje mayoritario, es la que reacciona con las grasas, carbohidratos, proteínas, minerales y vitaminas, las cuales tienen funciones específicas en el cuerpo humano. Todo alimento tiene un porcentaje determinado como su actividad de agua, así el agua tiene dos tipos de agua siendo agua ligada y agua libre, siendo este último el que mayor cantidad o porcentaje, está presente en cada alimento. Cada alimento tiene una actividad de agua, siendo tres tipos: Tipo 1, Tipo 2 y Tipo 3, el cual tiene determinados valores: 1.00 – 0.80, 0.25 – 0.80 7 menor de 0.25, cada alimento tiene un determinado tiempo de vida útil, que está relacionado por el contenido de su actividad y porcentaje de agua libre, el cual esta registrada en sus gráficas correspondiente, porque cada alimento tiene un comportamiento diferente uno de otro (frutas, carnes, hortalizas, etc.). Así mismo dentro de la distribución del agua en los alimentos hay alimentos con alto contenido de agua (alimentos frescos como frutas, hortalizas, verduras, alimentos líquidos), alimentos con humedad intermedia (cereales, derivados de estos, derivados de carnes, derivados de leche, soya, bebidas, leguminosas, oleaginosas) y por último alimentos altamente secos (alimentos secos como: leche en polvo, café instantáneo, aceites vegetales, productos con humedad menor de 5% de agua libre). Un alimento bien procesado según el tipo de tecnología usada, tiene un largo tiempo de vida útil, porque para esto se realiza, estudios de prolongación de vida en anaquel, estas pruebas se realizan usando temperaturas altas forzando al alimento a condiciones extremas, de temperaturas, presión y tiempo. Así mismo en cada actividad de agua, existe un determinado microorganismo que se desarrolla, y altera la calidad del producto o alimento. | Trabajo academico
显示更多 [+] 显示较少 [-]Acidic electrolyzed water: Food additive or sanitizer? 全文
2024
Duried Alwazeer
The Water Footprint of Global Food Production 全文
2020
Mesfin M. Mekonnen | Winnie Gerbens-Leenes
Agricultural production is the main consumer of water. Future population growth, income growth, and dietary shifts are expected to increase demand for water. The paper presents a brief review of the water footprint of crop production and the sustainability of the blue water footprint. The estimated global consumptive (green plus blue) water footprint ranges from 5938 to 8508 km<sup>3</sup>/year. The water footprint is projected to increase by as much as 22% due to climate change and land use change by 2090. Approximately 57% of the global blue water footprint is shown to violate the environmental flow requirements. This calls for action to improve the sustainability of water and protect ecosystems that depend on it. Some of the measures include increasing water productivity, setting benchmarks, setting caps on the water footprint per river basin, shifting the diets to food items with low water requirements, and reducing food waste.
显示更多 [+] 显示较少 [-]