细化搜索
结果 1-3 的 3
Hydrochemical appraisal of ice- and rock-glacier meltwater in the hyperarid Agua Negra drainage basin, Andes of Argentina 全文
2008
Lecomte, Karina L. | Milana, Juan Pablo | Formica, Stella M. | Depetris, P. J. (Pedro J)
The Agua Negra drainage system (30 12'S, 69 50' W), in the Argentine Andes holds several ice- and rock-glaciers, which are distributed from 4200 up to 6300 m a.s.l. The geochemical study of meltwaters reveals that ice-glaciers deliver a HCO₃⁻----Ca²⁺ solution and rock-glaciers a SO₄²⁻----HCO₃⁻----Ca²⁺ solution. The site is presumably strongly influenced by sublimation and dry deposition. The main processes supplying solutes to meltwater are sulphide oxidation (i.e. abundant hydrothermal manifestations), and hydrolysis and dissolution of carbonates and silicates. Marine aerosols are the main source of NaCl. The fine-grained products of glacial comminution play a significant role in the control of dissolved minor and trace elements: transition metals (e.g. Mn, Zr, Cu, and Co) appear to be selectively removed from solution, whereas some LIL (large ion lithophile) elements, such as Sr, Cs, and major cations, are more concentrated in the lowermost reach. Daily concentration variation of dissolved rare earth elements (REE) tends to increase with discharge. Through PHREEQC inverse modelling, it is shown that gypsum dissolution (i.e. sulphide oxidation) is the most important geochemical mechanism delivering solutes to the Agua Negra drainage system, particularly in rock-glaciers. At the lowermost reach, the chemical signature appears to change depending on the relative significance of different meltwater sources: silicate weathering seems to be more important when meltwater has a longer residence time, and calcite and gypsum dissolution is more conspicuous in recently melted waters. A comparison with a non-glacierized semiarid drainage of comparable size shows that the glacierized basin has a higher specific denudation, but it is mostly accounted for by relatively soluble phases (i.e. gypsum and calcite). Meltwater chemistry in glacierized arid areas appears strongly influenced by sublimation/evaporation, in contrast with its humid counterparts.
显示更多 [+] 显示较少 [-]Geogenic groundwater solutes: the myth | Solutés géogéniques dans les eaux souterraines: le mythe Solutos geogénicos en el agua subterránea: el mito 地质上的地下水溶质:错误的认识 Solutos geogênicos em águas subterrâneas: o mito 全文
2019
Wood, Warren W.
What is the source of geogenic (natural or native) solutes in groundwater? The orthodox explanation suggests it is largely a function of water–rock interaction (weathering of the soil zone and aquifer mineral framework). It is proposed herein that atmospheric deposition (combination of wet and dry aerosols from ocean spray, smoke, volcanoes, continental dust, and lightning) is a significant source, and in many cases the dominant source, of the major and minor geogenic solutes in groundwater. Solute mass-balance analyses suggest that much of the mass of major and minor ions must be transported into the aquifer from an external source. Example case studies are presented: analysis of groundwater in a coastal marine aquifer located in an arid area (United Arab Emirates) suggests that over 50% of several major ions potentially originate from atmospheric deposition; in an alluvial fan in a semi-arid system (High Plains, USA), 100% of most solutes potentially originate from atmospheric deposition; and in a humid glacial aquifer system (Michigan, USA), 20–30% of many major ions are potentially from atmospheric deposition. These observations contrast with many hydrogeologic textbooks, which still propose the origin to be water–rock interaction—hence, the myth.
显示更多 [+] 显示较少 [-]Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA | Empreintes des sources de salinité sur les eaux souterraines dans le système aquifère côtier du Golfe, Etats Unis d’Amérique Las huellas de las fuentes de salinidad del agua subterránea en el Sistema Acuífero de la Costa del Golfo, EE.UU. 识别美国海湾沿海含水层系统地下水盐分源 Impressão digital de fontes de salinidade das águas subterrâneas no Sistema Aquífero da Costa do Golfo, EUA 全文
2018
Chowdhury, AliH. | Scanlon, BridgetR. | Reedy, RobertC. | Young, Steve
Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ∼1,400 chemical analyses and ∼90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370– 600 mm/yr, respectively). Molar Cl/Br ratios (median 540–600), depleted δ²H and δ¹⁸O (−24.7‰, −4.5‰) relative to seawater (Cl/Br ∼655 and δ²H, δ¹⁸O 0‰, 0‰, respectively), and elevated ³⁶Cl/Cl ratios (∼100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ¹⁸O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.
显示更多 [+] 显示较少 [-]