细化搜索
结果 1-10 的 5,173
Haloalkaliphilic Microorganisms Assist Sulfide Removal in a Microbial Electrolysis Cell 全文
2018
Ni, Gaofeng | Harnawan, Pebrianto | Seidel, Laura | Ter Heijne, Annemiek | Sleutels, Tom | Buisman, Cees J.N. | Dopson, Mark
Several industrial processes produce toxic sulfide containing streams that are often scrubbed using caustic solutions. An alternative, cost effective sulfide treatment method is bioelectrochemical sulfide removal. For the first time, a haloalkaliphilic sulfide-oxidizing microbial consortium was introduced to the anodic chamber of a microbial electrolysis cell operated at alkaline pH and with 1.0 M sodium ions. Under anode potential control, the highest sulfide removal rate was 2.16 mM/day and chemical analysis supported that the electrical current generation was from the sulfide oxidation. Biotic operation produced a maximum current density of 3625 mA/m² compared to 210 mA/m² while under abiotic operation. Furthermore, biotic electrical production was maintained for a longer period than for abiotic operation, potentially due to the passivation of the electrode by elemental sulfur. The use of microorganisms reduced the energy input in this study compared to published electrochemical sulfide removal technologies. Sulfide-oxidizing populations dominated both the planktonic and electrode-attached communities with 16S rRNA gene sequences aligning within the genera Thioalkalivibrio, Thioalkalimicrobium, and Desulfurivibrio. The dominance of the Desulfurivibrio-like population on the anode surface offered evidence for the first haloalkaliphilic bacterium able to couple electrons from sulfide oxidation to extracellular electron transfer to the anode.
显示更多 [+] 显示较少 [-]Inactivation of Microorganisms in Foods by Ohmic Heating: A Review 全文
2018
Tian, Xiaojing | Yu, Qianqian | Wu, Wei | Dai, Ruitong
Ohmic heating (OH) is an alternative food processing technology for effectively inactivating microorganisms that depends on the heat that has been generated when electrical current passes directly through food material. The advantages of OH for microbial inactivation include shorter heating time, more uniform heat distribution inside food, reduced nutrition losses, and higher energy efficiency. This review presents some published information regarding the inactivation of microorganisms by OH, including the major factors that influence the inactivation effectiveness of OH, the inactivation of vegetative cells and spores in foods by OH, the inactivation mechanisms of OH, and the challenges and prospects of OH for food processing. This information will improve the understanding of OH for inactivation of microorganisms and promote the application of OH in the food industry.
显示更多 [+] 显示较少 [-]Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis 全文
2018
Angeliki Marietou | Hans Røy | Bo B. Jørgensen | Kasper U. Kjeldsen
The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM) there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT) are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.
显示更多 [+] 显示较少 [-]A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors 全文
2018
Zhai, Yunbo | Li, Xue | Wang, Tengfei | Wang, Bei | Li, Caiting | Zeng, Guangming
Airborne microorganisms (AM), vital components of particulate matters (PM), are widespread in the atmosphere. Since some AM have pathogenicity, they can lead to a wide range of diseases in human and other organisms, meanwhile, some AM act as cloud condensation nuclei and ice nuclei which let them can affect the climate. The inherent characteristics of AM play critical roles in many aspects which, in turn, can decide microbial traits. The uncertain factors bring various influences on AM, which make it difficult to elaborate effect trends as whole. Because of the potential roles of AM in environment and potent effects of factors on AM, detailed knowledge of them is of primary significance. This review highlights the issues of composition and characteristics of AM with size-distribution, species diversity, variation and so on, and summarizes the main factors which affect airborne microbial features. This general information is a knowledge base for further thorough researches of AM and relevant aspects. Besides, current knowledge gaps and new perspectives are offered to roundly understand the impacts and application of AM in nature and human health.
显示更多 [+] 显示较少 [-]CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms 全文
2018
Javed, Muhammad R. | Sadaf, Maria | Ahmed, Temoor | Jamil, Amna | Nawaz, Marium | Abbas, Hira | Ijaz, Anam
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR or more precisely CRISPR-Cas) system has proven to be a highly efficient and simple tool for achieving site-specific genome modifications in comparison to Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs). The discovery of bacterial defense system that uses RNA-guided DNA cleaving enzymes for producing double-strand breaks along CRISPR has provided an exciting alternative to ZFNs and TALENs for gene editing & regulation, as the CRISPR-associated (Cas) proteins remain the same for different gene targets and only the short sequence of the guide RNA needs to be changed to redirect the site-specific cleavage. Therefore, in recent years the CRISPR-Cas system has emerged as a revolutionary engineering tool for carrying out precise and controlled genetic modifications in many microbes such as Escherichia coli, Staphylococcus aureus, Lactobacillus reuteri, Clostridium beijerinckii, Streptococcus pneumonia, and Saccharomyces cerevisiae. Though, concerns about CRISPR-Cas effectiveness in interlinked gene modifications and off-target effects need to be addressed. Nevertheless, it holds a great potential to speed up the pace of gene function discovery by interacting with previously intractable organisms and by raising the extent of genetic screens. Therefore, the potential applications of this system in microbial adaptive immune system, genome editing, gene regulations, functional genomics & biosynthesis along ethical issues, and possible harmful effects have been reviewed.
显示更多 [+] 显示较少 [-]A method for obtaining serial ultrathin sections of microorganisms in transmission electron microscopy 全文
2018
Yamaguchi, M. (Masashi) | Chibana, Hiroji
Observing cells and cell components in three dimensions at high magnification in transmission electron microscopy requires preparing serial ultrathin sections of the specimen. Although preparing serial ultrathin sections is considered to be very difficult, it is rather easy if the proper method is used. In this paper, we show a step-by-step procedure for safely obtaining serial ultrathin sections of microorganisms. The key points of this method are: 1) to use the large part of the specimen and adjust the specimen surface and knife edge so that they are parallel to each other; 2) to cut serial sections in groups and avoid difficulty in separating sections using a pair of hair strands when retrieving a group of serial sections onto the slit grids; 3) to use a 'Section-holding loop' and avoid mixing up the order of the section groups; 4) to use a 'Water-surface-raising loop' and make sure the sections are positioned on the apex of the water and that they touch the grid first, in order to place them in the desired position on the grids; 5) to use the support film on an aluminum rack and make it easier to recover the sections on the grids and to avoid wrinkling of the support film; and 6) to use a staining tube and avoid accidentally breaking the support films with tweezers. This new method enables obtaining serial ultrathin sections without difficulty. The method makes it possible to analyze cell structures of microorganisms at high resolution in 3D, which cannot be achieved by using the automatic tape-collecting ultramicrotome method and serial block-face or focused ion beam scanning electron microscopy.
显示更多 [+] 显示较少 [-]Effects of Glyphosate-, Glufosinate- and Flazasulfuron-Based Herbicides on Soil Microorganisms in a Vineyard 全文
2018
Mandl, Karin | Cantelmo, Clemens | Gruber, Edith | Faber, Florian | Friedrich, Barbara | Zaller, Johann G.
In a vineyard we examined the effects of broad-spectrum herbicides with three different active ingredients (glyphosate, glufosinate, flazasulfuron) on soil microorganisms. Mechanical weeding served as control treatment. Treatments were applied within grapevine rows and soil samples taken from there in 10–20 cm depth 77 days after application. Fungi were analyzed using classical sequencing technology and bacteria using next-generation sequencing. The number of colony-forming units (CFU) comprising bacteria, yeasts and molds was higher under flazasulfuron compared to all other treatments which had similar CFU levels. Abundance of the fungus Mucor was higher under flazasulfuron than glufosinate and mechanical weeding; Mucor was absent under glyphosate. Several other fungi taxa were exclusively found under a specific treatment. Up to 160 different bacteria species were found – some of them for the first time in vineyard soils. Total bacterial counts under herbicides were on average 260% higher than under mechanical weeding; however due to high variability this was not statistically significant. We suggest that herbicide-induced alterations of soil microorganisms could have knock-on effects on other parts of the grapevine system.
显示更多 [+] 显示较少 [-]Nitrifying activity and ammonia-oxidizing microorganisms in a constructed wetland treating polluted surface water 全文
2018
Li, Bingxin | Yang, Yuyin | Chen, Jianfei | Wu, Zhen | Liu, Yong | Xie, Shuguang
Ammonia oxidation, performed by both ammonia oxidizing bacteria (AOB) and archaea (AOA), is an important step for nitrogen removal in constructed wetlands (CWs). However, little is known about the distribution of these ammonia oxidizing organisms in CWs and the associated wetland environmental variables. Their relative importance to nitrification in CWs remains still controversial. The present study investigated the seasonal dynamics of AOA and AOB communities in a free water surface flow CW (FWSF-CW) used to ameliorate the quality of polluted river water. Strong seasonality effects on potential nitrification rate (PNR) and the abundance, richness, diversity and structure of AOA and AOB communities were observed in the river water treatment FWSF-CW. PNR was positively correlated to AOB abundance. AOB (6.76×10⁵–6.01×10⁷ bacterial amoA gene copies per gram dry sediment/soil) tended to be much more abundant than AOA (from below quantitative PCR detection limit to 9.62×10⁶ archaeal amoA gene copies per gram dry sediment/soil). Both AOA and AOB abundance were regulated by the levels of nitrogen, phosphorus and organic carbon. Different wetland environmental variables determined the diversity and structure of AOA and AOB communities. Wetland AOA communities were mainly composed of unknown species and Nitrosopumilus-like organisms, while AOB communities were mainly represented by both Nitrosospira and Nitrosomonas.
显示更多 [+] 显示较少 [-]Encapsulating Microorganisms inside Electrospun Microfibers as a Living Material Enables Room-Temperature Storage of Microorganisms 全文
2018
Han, Jinpeng | Liang, Chenyu | Cui, Yuchen | Xiong, Likun | Guo, Xiaocui | Yuan, Xiaoyan | Yang, Dayong
Room-temperature storage and transportation of microorganisms maximize the power of microorganisms in healthcare, energy, and environment. Recently, paper-based biotechnologies have been developed to enable room-temperature storage of a variety of nonliving biosystems such as diagnostic devices and cell-free systems. Herein, room-temperature storage of living microorganisms is realized by an electrospun nonwoven paper containing convex region, which is composed of coiled microfibers with dense distribution of microorganisms. Microorganisms are encapsulated into the microfibers and remain intact after electrospinning. Poly(ethylene oxide) is used as polymer matrix, and glycerol and dextran are used as additives. When the contents of glycerol and dextran are optimized as 5 and 0.4%, the room-temperature time is prolonged to 2 days, more than 8 folds as compared with the control group. Upon demand, the microorganisms can be activated by adding water and used for culturing microorganisms directly. Furthermore, mechanisms which account for microbial activity and storage are studied. Our microfiber-based strategy is universal for the room-temperature storage of prokaryotic and eukaryotic microorganisms in the solid formulation. Besides, our microorganism/polymer complex structures represent novel living materials via a bottom-up strategy, which are of great potential for new biomedical applications.
显示更多 [+] 显示较少 [-]An overview of the antimicrobial resistance mechanisms of bacteria 全文
2018
Wanda C Reygaert
Resistance to antimicrobial agents has become a major source of morbidity and mortality worldwide. When antibiotics were first introduced in the 1900’s, it was thought that we had won the war against microorganisms. It was soon discovered however, that the microorganisms were capable of developing resistance to any of the drugs that were used. Apparently most pathogenic microorganisms have the capability of developing resistance to at least some antimicrobial agents. The main mechanisms of resistance are: limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. These mechanisms may be native to the microorganisms, or acquired from other microorganisms. Understanding more about these mechanisms should hopefully lead to better treatment options for infective diseases, and development of antimicrobial drugs that can withstand the microorganisms attempts to become resistant.
显示更多 [+] 显示较少 [-]