خيارات البحث
النتائج 81 - 90 من 146
Comparing the appearance and phytochemical characterization of dried lily (L. davidii var. unicolor) bulbs processed by different drying technologies النص الكامل
2024
Lu Mi | Shini Yang | Xue Wang | Lei Xu | Yuhong Lin | Shuming Yang | Zhenzhen Xu
Comparing the appearance and phytochemical characterization of dried lily (L. davidii var. unicolor) bulbs processed by different drying technologies النص الكامل
2024
Lu Mi | Shini Yang | Xue Wang | Lei Xu | Yuhong Lin | Shuming Yang | Zhenzhen Xu
Lily bulbs are valued for their health benefits, and drying is a common method for their preservation. This study employed untargeted metabolomics using UHPLC-QTOF-MS to analyze the phytochemical profiles of lily bulbs dried by hot air (HD), microwave (MD), and vacuum freeze (FD) methods. In terms of appearance, FD samples exhibited minimal browning and wrinkling, while HD bulbs showed the most severe changes. Nineteen potential markers were identified, with HD samples showing higher levels of bitter amino acids, peptides, and N-fructosyl phenylalanine. The markers of FD samples were glutamine, coumarin, and p-coumaric acid. Notably, eleutheroside E was detected in lily bulbs for the first time and confirmed as an MD marker, with levels 1.51-fold and 6.19-fold higher than in FD and HD samples, respectively. MD method shows promise for enriching bioactive compounds in dried lily bulbs.
اظهر المزيد [+] اقل [-]Comparing the appearance and phytochemical characterization of dried lily (L. davidii var. unicolor) bulbs processed by different drying technologies النص الكامل
2024
Lu Mi | Shini Yang | Xue Wang | Lei Xu | Yuhong Lin | Shuming Yang | Zhenzhen Xu
Lily bulbs are valued for their health benefits, and drying is a common method for their preservation. This study employed untargeted metabolomics using UHPLC-QTOF-MS to analyze the phytochemical profiles of lily bulbs dried by hot air (HD), microwave (MD), and vacuum freeze (FD) methods. In terms of appearance, FD samples exhibited minimal browning and wrinkling, while HD bulbs showed the most severe changes. Nineteen potential markers were identified, with HD samples showing higher levels of bitter amino acids, peptides, and N-fructosyl phenylalanine. The markers of FD samples were glutamine, coumarin, and p-coumaric acid. Notably, eleutheroside E was detected in lily bulbs for the first time and confirmed as an MD marker, with levels 1.51-fold and 6.19-fold higher than in FD and HD samples, respectively. MD method shows promise for enriching bioactive compounds in dried lily bulbs.
اظهر المزيد [+] اقل [-]Characterization and angiotensin-converting enzyme inhibitory activity of peptides of seabuckthorn (Hippophae rhamnoides L.) seed meal النص الكامل
2024
Yuanju Zheng | Di Wang | Yunxi Zhou | Michael Yuen | Tina Yuen | Hywel Yuen | Qiang Peng
Characterization and angiotensin-converting enzyme inhibitory activity of peptides of seabuckthorn (Hippophae rhamnoides L.) seed meal النص الكامل
2024
Yuanju Zheng | Di Wang | Yunxi Zhou | Michael Yuen | Tina Yuen | Hywel Yuen | Qiang Peng
Given the side effects associated with synthetic antihypertensive drugs, there is a growing need among researchers to investigate angiotensin-converting enzyme (ACE) inhibitory peptides derived from food protein as safer therapeutic alternatives. This study used seabuckthorn (Hippophae rhamnoides L.) seed meal as the raw material, and the protein was extracted by alkaline extraction and acid precipitation. After enzymatic digestion, peptides with molecular weight less than 3 kDa were selected for study. The screened peptide had an IC50 value of 4.358 mg/mL on ACE with a non-competitive inhibition mechanism and good inhibition stability. By employing infrared (IR) analysis, exclusively β-fold and β-helix structures were identified in the hydrolysate, while no other structural motifs were detected. X-ray diffraction revealed that it had an irregular amorphous structure. The peptide contains 17 amino acids that are both highly acidic and hydrophobic, with glutamic acid ranking first in terms of the number of individual amino acids. Compared with the database (NCBI, Uniport), ten peptides with ACE inhibitory activity were detected, and molecular docking showed the mechanism of each peptide inhibiting ACE, FRVAWTEKNDGQRAPLANN, LIISVAYARVAKKLWLCNMIGDVT-TEQY, VIRSRASDGCLEVKEFEDIPP, AGGGG-GGGGGGSRRL, LQPREGPAGGTT-ALREELSLGPEAALDTPPAGP, DDEARINQLFL, FAVSTLTSYDWSDRDDATQGR-KL, RQLSLEGSGLGVEDLKDN, GGGGGGGGGGGGGGGIGGGGGGGGGGGAR, and KEALGEGCFGNRIDRIGD. According to the results, AGGGGGG-GGGGSRRL is more stable in binding to ACE and may have better inhibitory activity. It has been shown that seabuckthorn protein can be an alternative source of ACE inhibitory peptides.
اظهر المزيد [+] اقل [-]Characterization and angiotensin-converting enzyme inhibitory activity of peptides of seabuckthorn (Hippophae rhamnoides L.) seed meal النص الكامل
2024
Yuanju Zheng | Di Wang | Yunxi Zhou | Michael Yuen | Tina Yuen | Hywel Yuen | Qiang Peng
Given the side effects associated with synthetic antihypertensive drugs, there is a growing need among researchers to investigate angiotensin-converting enzyme (ACE) inhibitory peptides derived from food protein as safer therapeutic alternatives. This study used seabuckthorn (Hippophae rhamnoides L.) seed meal as the raw material, and the protein was extracted by alkaline extraction and acid precipitation. After enzymatic digestion, peptides with molecular weight less than 3 kDa were selected for study. The screened peptide had an IC50 value of 4.358 mg/mL on ACE with a non-competitive inhibition mechanism and good inhibition stability. By employing infrared (IR) analysis, exclusively β-fold and β-helix structures were identified in the hydrolysate, while no other structural motifs were detected. X-ray diffraction revealed that it had an irregular amorphous structure. The peptide contains 17 amino acids that are both highly acidic and hydrophobic, with glutamic acid ranking first in terms of the number of individual amino acids. Compared with the database (NCBI, Uniport), ten peptides with ACE inhibitory activity were detected, and molecular docking showed the mechanism of each peptide inhibiting ACE, FRVAWTEKNDGQRAPLANN, LIISVAYARVAKKLWLCNMIGDVT-TEQY, VIRSRASDGCLEVKEFEDIPP, AGGGG-GGGGGGSRRL, LQPREGPAGGTT-ALREELSLGPEAALDTPPAGP, DDEARINQLFL, FAVSTLTSYDWSDRDDATQGR-KL, RQLSLEGSGLGVEDLKDN, GGGGGGGGGGGGGGGIGGGGGGGGGGGAR, and KEALGEGCFGNRIDRIGD. According to the results, AGGGGGG-GGGGSRRL is more stable in binding to ACE and may have better inhibitory activity. It has been shown that seabuckthorn protein can be an alternative source of ACE inhibitory peptides.
اظهر المزيد [+] اقل [-]pH/glucose dual-responsive protein-based hydrogels with enhanced adhesive and antibacterial properties for diabetic wound healing النص الكامل
2024
Shuhua Yin | Maoping Duan | Matthias Fellner | Zhongjiang Wang | Chenyan Lv | Jiachen Zang | Guanghua Zhao | Tuo Zhang
pH/glucose dual-responsive protein-based hydrogels with enhanced adhesive and antibacterial properties for diabetic wound healing النص الكامل
2024
Shuhua Yin | Maoping Duan | Matthias Fellner | Zhongjiang Wang | Chenyan Lv | Jiachen Zang | Guanghua Zhao | Tuo Zhang
Designing a wound dressing that offers excellent antibacterial properties while providing dual pH/glucose responsiveness for diabetic wound healing remains a considerable challenge. Herein, a 3D cross-linked native protein hydrogel was constructed through a Schiff base reaction based on -NH2 in paramyosin (PM) and -CHO in oxidized dextran (ODA) under mild conditions. Within the hydrogel, both amikacin and glucose oxidase were encapsulated during gelation. The resulting hydrogel exhibited favorable rheological properties, featuring self-healing, antibacterial activity, tissue adhesiveness, and excellent biocompatibility. Notably, the hydrogel demonstrated excellent pH/glucose dual-responsive properties. In infected wounds, the Schiff base bonds dissociated due to low pH, while in uninfected wounds with high blood glucose levels, the encapsulated glucose oxidase was functional, which also lowered the local pH level and dissociated the Schiff base bonds. Furthermore, the hydrogel quickly achieved pH/glucose dual responsiveness, leading to increased amikacin release to reduce bacterial invasion, alleviate oxidative stress, promote re-epithelialization and collagen deposition, and eventually accelerate diabetic wound healing. Collectively, the constructed hydrogel offers brand-new viewpoints on glucose-responsive biomaterials for diabetic wound therapy.
اظهر المزيد [+] اقل [-]pH/glucose dual-responsive protein-based hydrogels with enhanced adhesive and antibacterial properties for diabetic wound healing النص الكامل
2024
Shuhua Yin | Maoping Duan | Matthias Fellner | Zhongjiang Wang | Chenyan Lv | Jiachen Zang | Guanghua Zhao | Tuo Zhang
Designing a wound dressing that offers excellent antibacterial properties while providing dual pH/glucose responsiveness for diabetic wound healing remains a considerable challenge. Herein, a 3D cross-linked native protein hydrogel was constructed through a Schiff base reaction based on -NH2 in paramyosin (PM) and -CHO in oxidized dextran (ODA) under mild conditions. Within the hydrogel, both amikacin and glucose oxidase were encapsulated during gelation. The resulting hydrogel exhibited favorable rheological properties, featuring self-healing, antibacterial activity, tissue adhesiveness, and excellent biocompatibility. Notably, the hydrogel demonstrated excellent pH/glucose dual-responsive properties. In infected wounds, the Schiff base bonds dissociated due to low pH, while in uninfected wounds with high blood glucose levels, the encapsulated glucose oxidase was functional, which also lowered the local pH level and dissociated the Schiff base bonds. Furthermore, the hydrogel quickly achieved pH/glucose dual responsiveness, leading to increased amikacin release to reduce bacterial invasion, alleviate oxidative stress, promote re-epithelialization and collagen deposition, and eventually accelerate diabetic wound healing. Collectively, the constructed hydrogel offers brand-new viewpoints on glucose-responsive biomaterials for diabetic wound therapy.
اظهر المزيد [+] اقل [-]Microfluidization of tender coconut water and its impact on spoilage enzymes and physicochemical properties النص الكامل
2024
P. S. Sruthi | A. Vanmathi Mugasundari | Shubham Nimbkar | Jeyan Arthur Moses | Vadakeppulpara Ramachandran Sinija
Microfluidization of tender coconut water and its impact on spoilage enzymes and physicochemical properties النص الكامل
2024
P. S. Sruthi | A. Vanmathi Mugasundari | Shubham Nimbkar | Jeyan Arthur Moses | Vadakeppulpara Ramachandran Sinija
In this study, microfluidization was explored to inactivate autolytic spoilage enzymes (polyphenol oxidase, PPO, and peroxidase, POD) that significantly impact the nutritional and sensory qualities of tender coconut water (TCW). TCW was treated at three different pressure levels (70, 140, and 210 MPa) and five different number of passes/cycles (3, 5, 7, 9, and 11). The highest percentage reduction was obtained in the case of PPO (~61% in the 11th pass, at 210 MPa), while for POD, ~45% reduction was achieved in the 9th pass, at 70 MPa. The impact of different treatment conditions on the physicochemical properties of TCW, such as color, turbidity, total soluble solids (TSS), pH, titratable acidity, total phenolic content (TPC), and protein content was assessed. The pH and TSS remained unaffected; whereas, turbidity showed an increase with treatment intensity from 2.59% ± 0.14% (untreated) to 8.62% ± 0.39% (30,000 psi, 11 passes), and the highest color difference was observed for this sample (ΔE = 4.61 ± 0.018). Furthermore, TPC and antioxidant activity showed minimal changes upon treatment. Overall, the findings of this research provide new insights into the application of microfluidization for the processing of thermally sensitive products such as TCW, extending their shelf life without any additives and providing a clean label solution.
اظهر المزيد [+] اقل [-]Microfluidization of tender coconut water and its impact on spoilage enzymes and physicochemical properties النص الكامل
2024
P. S. Sruthi | A. Vanmathi Mugasundari | Shubham Nimbkar | Jeyan Arthur Moses | Vadakeppulpara Ramachandran Sinija
In this study, microfluidization was explored to inactivate autolytic spoilage enzymes (polyphenol oxidase, PPO, and peroxidase, POD) that significantly impact the nutritional and sensory qualities of tender coconut water (TCW). TCW was treated at three different pressure levels (70, 140, and 210 MPa) and five different number of passes/cycles (3, 5, 7, 9, and 11). The highest percentage reduction was obtained in the case of PPO (~61% in the 11th pass, at 210 MPa), while for POD, ~45% reduction was achieved in the 9th pass, at 70 MPa. The impact of different treatment conditions on the physicochemical properties of TCW, such as color, turbidity, total soluble solids (TSS), pH, titratable acidity, total phenolic content (TPC), and protein content was assessed. The pH and TSS remained unaffected; whereas, turbidity showed an increase with treatment intensity from 2.59% ± 0.14% (untreated) to 8.62% ± 0.39% (30,000 psi, 11 passes), and the highest color difference was observed for this sample (ΔE = 4.61 ± 0.018). Furthermore, TPC and antioxidant activity showed minimal changes upon treatment. Overall, the findings of this research provide new insights into the application of microfluidization for the processing of thermally sensitive products such as TCW, extending their shelf life without any additives and providing a clean label solution.
اظهر المزيد [+] اقل [-]The optimal precise temperature alleviated chilling injury and maintained post-harvest quality for 'Mengzi' pomegranate fruit النص الكامل
2024
Limei Li | Jinshan Luo | Xihong Li | Lingling Pang | Xiaoyu Jia | Lingling Liu | Miroslava Kačániová | Jitian Song | Liping Qiao
The optimal precise temperature alleviated chilling injury and maintained post-harvest quality for 'Mengzi' pomegranate fruit النص الكامل
2024
Limei Li | Jinshan Luo | Xihong Li | Lingling Pang | Xiaoyu Jia | Lingling Liu | Miroslava Kačániová | Jitian Song | Liping Qiao
Chilling injury (CI) is a highly common physiological disorder in pomegranates during cold storage. Although several approaches have been investigated to mitigate the CI symptoms among some pomegranate cultivars, the fundamental and crucial environmental factor — the precise storage temperature for the 'Mengzi' cultivation remains unknown. This research evaluated the impact of storage temperatures of 0, 1, 2, 3, and 4 °C on the post-harvest quality of pomegranates. Results indicated that pomegranates stored at 2 °C exhibited the slightest color change and browning index. After storage of 130 d, pomegranates stored at 2 °C exhibited the lower CI index (82.79% reduction) and the lowest decay incidence (24.68% reduction) compared to those stored at 0 °C. The respiratory rate of pomegranates (2 °C) was also evidently suppressed (16.60%), along with a reduction in weight loss (3.46%). Furthermore, pomegranates stored at 2 °C exhibited the lowest activities of polyphenol oxidase (PPO) and peroxidase (POD), accompanied by the highest total phenolic content, which contributed to a reduction in malondialdehyde (MDA) accumulation. Relatively higher concentrations of soluble solids and titratable acid, as well as a higher sensory evaluation, were found in pomegranates stored at 2 °C. Consequently, it was inferred that the optimal temperature maintained cell membrane integrity modulated normal respiratory metabolism, and oxidative balance, and therefore alleviated CI and deterioration. This report can provide the guiding significance for the long-term storage of 'Mengzi' pomegranates under the condition of precise temperature control in phase temperature storage.
اظهر المزيد [+] اقل [-]The optimal precise temperature alleviated chilling injury and maintained post-harvest quality for 'Mengzi' pomegranate fruit النص الكامل
2024
Limei Li | Jinshan Luo | Xihong Li | Lingling Pang | Xiaoyu Jia | Lingling Liu | Miroslava Kačániová | Jitian Song | Liping Qiao
Chilling injury (CI) is a highly common physiological disorder in pomegranates during cold storage. Although several approaches have been investigated to mitigate the CI symptoms among some pomegranate cultivars, the fundamental and crucial environmental factor — the precise storage temperature for the 'Mengzi' cultivation remains unknown. This research evaluated the impact of storage temperatures of 0, 1, 2, 3, and 4 °C on the post-harvest quality of pomegranates. Results indicated that pomegranates stored at 2 °C exhibited the slightest color change and browning index. After storage of 130 d, pomegranates stored at 2 °C exhibited the lower CI index (82.79% reduction) and the lowest decay incidence (24.68% reduction) compared to those stored at 0 °C. The respiratory rate of pomegranates (2 °C) was also evidently suppressed (16.60%), along with a reduction in weight loss (3.46%). Furthermore, pomegranates stored at 2 °C exhibited the lowest activities of polyphenol oxidase (PPO) and peroxidase (POD), accompanied by the highest total phenolic content, which contributed to a reduction in malondialdehyde (MDA) accumulation. Relatively higher concentrations of soluble solids and titratable acid, as well as a higher sensory evaluation, were found in pomegranates stored at 2 °C. Consequently, it was inferred that the optimal temperature maintained cell membrane integrity modulated normal respiratory metabolism, and oxidative balance, and therefore alleviated CI and deterioration. This report can provide the guiding significance for the long-term storage of 'Mengzi' pomegranates under the condition of precise temperature control in phase temperature storage.
اظهر المزيد [+] اقل [-]The effect of static magnetic field on inducing the binding of bovine serum albumin and cyanidin-3-O-glucoside النص الكامل
2024
Zongrui Zhang | Yixiao Shen | Guang Xin | Wei Deng | Hui Tan | Ahmed Adel Ashour | Dongnan Li
The effect of static magnetic field on inducing the binding of bovine serum albumin and cyanidin-3-O-glucoside النص الكامل
2024
Zongrui Zhang | Yixiao Shen | Guang Xin | Wei Deng | Hui Tan | Ahmed Adel Ashour | Dongnan Li
Serum albumin can bind with a diverse range of small molecules. It could therefore serve a protective or carrier function, and effectively address the issue of anthocyanins' susceptibility to decomposition. The anisotropic effect of the magnetic field (MF) can influence their interaction, thereby playing a distinct role in molecular bonding. In this study, bovine serum albumin (BSA) and cyanidin-3-O-glucoside (C3G) were used as raw materials. The mechanism underlying the formation of BSA-C3G complexes induced by static magnetic field (SMF) was investigated through analyses of secondary structure, functional groups, dipole moment, crystal cell dimensions, and microstructural characteristics. BSA and C3G were treated with 50, 100, 150, and 200 mT, respectively. As the magnetic intensity increased, the secondary structure of the complex changed, the α-spiral content, β-corner content, and irregular curl content decreased, while, the β-folding content increased. The average grain size of the BSA-C3G composite was observed to decrease. Furthermore, alterations in the crystal cell dimensions of the BSA-C3G complex were noted, accompanied by a tendency for the microstructure to become more flattened. This study offers valuable insights into the influence of SMF on the assembly behavior and structural characteristics of proteins and anthocyanins.
اظهر المزيد [+] اقل [-]The effect of static magnetic field on inducing the binding of bovine serum albumin and cyanidin-3-O-glucoside النص الكامل
2024
Zongrui Zhang | Yixiao Shen | Guang Xin | Wei Deng | Hui Tan | Ahmed Adel Ashour | Dongnan Li
Serum albumin can bind with a diverse range of small molecules. It could therefore serve a protective or carrier function, and effectively address the issue of anthocyanins' susceptibility to decomposition. The anisotropic effect of the magnetic field (MF) can influence their interaction, thereby playing a distinct role in molecular bonding. In this study, bovine serum albumin (BSA) and cyanidin-3-O-glucoside (C3G) were used as raw materials. The mechanism underlying the formation of BSA-C3G complexes induced by static magnetic field (SMF) was investigated through analyses of secondary structure, functional groups, dipole moment, crystal cell dimensions, and microstructural characteristics. BSA and C3G were treated with 50, 100, 150, and 200 mT, respectively. As the magnetic intensity increased, the secondary structure of the complex changed, the α-spiral content, β-corner content, and irregular curl content decreased, while, the β-folding content increased. The average grain size of the BSA-C3G composite was observed to decrease. Furthermore, alterations in the crystal cell dimensions of the BSA-C3G complex were noted, accompanied by a tendency for the microstructure to become more flattened. This study offers valuable insights into the influence of SMF on the assembly behavior and structural characteristics of proteins and anthocyanins.
اظهر المزيد [+] اقل [-]Storage stability of vitamin C fortified purple mashed potatoes processed with microwave-assisted thermal sterilization system النص الكامل
2023
Juhi Patel | Ashutos Parhi | Zhongwei Tang | Juming Tang | Shyam S. Sablani
Quality changes in ready-to-eat, shelf-stable foods, during storage can be influenced by many factors, such as processing, storage conditions, and the barrier properties of the packaging. This research investigated retention of vitamin C and anthocyanin in purple mashed potatoes as influenced by packaging barrier properties and encapsulation during storage after microwave assisted thermal sterilization. Purple mashed potatoes fortified with encapsulated (EVC) or non-encapsulated vitamin C (NVC) were packaged in two high-barrier polymer pouches (TLMO and PAA), processed with a pilot-scale microwave assisted thermal sterilization (MATS) system (F0 = 10.7 min), and stored at 37.8 °C for 7 months. MATS processing caused a significant increase (P < 0.05) in the oxygen transmission rates (OTRs) of PAA pouches but did not affect the barrier properties of TLMO pouches. PAA film also had a significantly higher (P < 0.05) water vapor transmission rate (WVTRs) than TLMO films, which resulted in a significantly higher (P < 0.05) weight loss in the samples packaged in PAA pouches than TLMO pouches. Purple mashed potatoes containing encapsulated vitamin C in both TLMO and PAA pouches showed the highest retention over 2 months of storage at 37.8 °C than non-encapsulated vitamin C. Additionally, purple mashed potatoes exposed to 700 lumens light showed a significantly higher (P < 0.05) deterioration in the anthocyanin, total phenolic content, color, and vitamin C. Overall, MATS processed purple mashed potatoes in high barrier polymeric packaging can minimize the quality changes when stored in dark conditions during storage and have an extended shelf life.
اظهر المزيد [+] اقل [-]The role of information quality in designing effective nutrition education programs for pecans النص الكامل
2023
Amy Szacilo | Xiao Tong | Libo Tan | Hsiangting Chen | Lingyan Kong
Pecans have many health benefits and are known for being part of a heart-healthy diet. Nutrition education is a key component in increasing pecan consumption among young consumers. In an effort to improve the efficacy of nutrition education targeting a younger demographic, this study aims to investigate how the information quality of a nutrition education program affects consumers' nutrition knowledge, trust, and intentions to recommend and try pecans. A total of 271 usable questionnaires were collected from college students at a southeast university. Our findings indicate that information quality could directly influence consumer knowledge and trust in an information source and indirectly influences consumers' willingness to recommend or try a product. This study also showed that improved consumer knowledge and trust in an information source could strongly affect their willingness to recommend pecan products. The findings of this study can be used to increase the efficacy of educational marketing strategies in the pecan industry and drive an increase in consumption among younger populations.
اظهر المزيد [+] اقل [-]Effects of high hydrostatic pressure treatment on bacterial composition in donkey milk studied by high throughput sequencing النص الكامل
2023
Jiaqi Kong | Wahafu Luoyizha | Liang Zhao | Congcong Fan | Hehe Li | Hui Li
High hydrostatic pressure has become a non-thermal alternative to thermal pasteurization in dairy product processing. In this study, we investigated the effects of the treatment of high hydrostatic pressure on the bacterial composition in donkey milk using high-throughput sequencing technology and culture-dependent methods. Compared with the microbial composition in the untreated donkey milk, the relative percentage of Pseudomonas and Acinetobacter in donkey milk after high hydrostatic pressure was significantly decreased by 4.92% and 4.82%, respectively. Beta diversity analysis demonstrated that the treatment of high hydrostatic pressure affected the microbial composition in donkey milk significantly. The potential probiotic Enterococcus casseliflavus isolated from the untreated donkey milk has a good acidifying ability. This study revealed the effects of high hydrostatic pressure treatment on the microbial composition in donkey milk, exhibiting its practical industrial application and the potential use of biological resources in the future.
اظهر المزيد [+] اقل [-]Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2 النص الكامل
2023
Yijing Pu | Luyao Chen | Xu He | Yuxia Ma | Jiankang Cao | Weibo Jiang
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major public health threat. Edible plants are rich in bioactive components, with a variety of functions, such as enhancing immunity, antiviral, anti-inflammatory and so on. Thus, the intake of edible plants to boost the body's resistance to COVID-19 is a promising and possibly affordable strategy. This review revisits the effects of functional components from edible plants (such as polyphenols, polysaccharides, lectin, alkaloids, polyunsaturated fatty acids, terpenoids, and saponins) on COVID-19. The inhibitory effects of bioactive components on the virus's entrance and replication, anti-inflammatory and immune enhancement are discussed. And finally, we present the prospects of using edible plant functional ingredients as vaccine adjuvants and the prospects and problems in the use of edible plant functional components for the prevention of COVID-19. Functional components of edible plants interacted with structural proteins of SARS-CoV-2 virus and key enzymes in virus recognition and replication, thereby inhibiting virus entry and replication in the host. Meanwhile, these bioactive components had anti-inflammatory effects and could inhibit cytokine storms. Therefore, we believe that functional components from edible plants can enhance human resistance to COVID-19 and can be applied in the development of new therapies.
اظهر المزيد [+] اقل [-]