خيارات البحث
النتائج 1 - 10 من 55
Facile green synthesis of ZnO–CdWO4 nanoparticles and their potential as adsorbents to remove organic dye النص الكامل
2021
Fatima, Bushra | Siddiqui, Sharf Ilahi | Nirala, Ranjeet Kumar | Vikrant, Kumar | Kim, Ki Hyun | Ahmad, Rabia | Chaudhry, Saif Ali
In this work, ZnO–CdWO₄ nanoparticles have been synthesized by the ecofriendly green method with lemon leaf extract to favorably anchor functional groups on their surface. The prepared ZnO–CdWO₄ nanoparticles are used as adsorbent to treat Congo red (CR) dye after characterization through FT-IR, UV–Vis, TEM, SEM-EDX, and HRTEM techniques. The equilibrium partition coefficient and adsorption capacity values for CR by ZnO–CdWO₄ are estimated as 21.4 mg g⁻¹ μM⁻¹ and 5 mg g⁻¹, respectively (at an initial dye concentration of 10 mg L⁻¹). The adsorption process is found as exothermic and spontaneous, as determined by the ΔG°, ΔS°, and ΔH° values. The Boyd plot has been used as a confirmatory tool to fit the adsorption kinetics data along with intraparticle diffusion and pseudo-second-order models. Based on this research, ZnO–CdWO₄ nanoparticles are validated as an effective adsorbent for CR dye in aqueous solutions.
اظهر المزيد [+] اقل [-]Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil النص الكامل
2020
Su, Binglin | Lin, Jiajiang | Owens, Gary | Chen, Zuliang
Iron nanoparticles (Fe NPs) have often been used for in situ remediation of both groundwater and soil. However, the impact of Fe NPs on the distribution and transformation of As species in contaminated soil is still largely unknown. In this study, green iron oxide nanoparticles synthesized using a euphorbia cochinchinensis leaf extract (GION) were used to stabilize As in a contaminated soil. GION exhibited excellent As stabilization effects, where As in non-specifically-bound and specifically-bound fractions decreased by 27.1% and 67.3% after 120 days incubation. While both arsenate (As (V)) and arsenite (As (III)) decreased after GION application, As (V) remained the dominant species in soil. X-ray photoelectron spectroscopy (XPS) confirmed that As (V) was the dominant species in specifically-bound fractions, while As (III) was the dominant species in amorphous and poorly-crystalline hydrous oxides of Fe and Al. Correlation analysis showed that while highly available As fractions were negatively correlated to oxalate and DCB extractable Fe, they were positively correlated to Fe²⁺ content, which indicated that Fe cycling was the main process influencing changes in As availability. X-ray fluorescence (XRF) spectroscopy also showed that the Fe₂O₃ content increased by 47.9% following GION soil treatments. Overall, this work indicated that As would be transformed to more stable fractions during the cycling of Fe following GION application and that the application of GION, even in small doses, provides a low-cost and ecofriendly method for the stabilization of As in soil.
اظهر المزيد [+] اقل [-]Wound healing properties of green (using Lawsonia inermis leaf extract) and chemically synthesized ZnO nanoparticles in albino rats النص الكامل
2022
Metwally, Asmaa A. | Abdel-Hady, Abdel-Nasser A. A. | Haridy, Mohie A. M. | Ebnalwaled, Khaled | Saied, AbdulRahman A. | Soliman, Ahmed S.
Wound healing is one of the utmost medical issues in human and veterinary medicine, which explains the urgent need for developing new agents that possess wound healing activities. The present study aimed to assess the effectiveness of green and chemical zinc oxide nanoparticles (ZnO-NPs) for wound healing. ZnO-NPs (green using Lawsonia inermis leaf extract and chemical) were synthesized and characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The gels containing the nanomaterials were prepared and inspected. Forty-five albino rats were divided into three groups, the control group was treated with normal saline 0.9%, and the other two groups were treated with gels containing green or chemical ZnO-NPs, respectively. On the 3ʳᵈ, 7ᵗʰ, 14ᵗʰ, and 21ˢᵗ days post-treatment (PT), the wounds were clinicopathologically examined. Both nanomaterials have good crystallinity and high purity, but green ZnO-NPs have a longer nanowire length and diameter than chemical ZnO-NPs. The formed gels were highly viscous with a pH of 6.5 to 7. The treated groups with ZnO-NP gels showed clinical improvement, as decreased wound surface area (WSA) percent (WSA%), increased wound contraction percent (WC%), and reduced healing time (p < 0.05) when compared with the control group. The histological scoring showed that the epithelialization score was significantly higher at the 21ˢᵗ day post-treatment in the treated groups than in the control group (p < 0.05), but the vasculature, necrosis, connective tissue formation, and collagen synthesis scores were mostly similar. The green and chemical ZnO-NP gels showed promising wound healing properties; however, the L. inermis–mediated ZnO-NPs were more effective.
اظهر المزيد [+] اقل [-]Investigation of Cochlospermum religiosum leaves for antidepressant and anxiolytic activities and its synergistic effect with imipramine and fluoxetine النص الكامل
2022
Bhatt, Shvetank | Behl, Tapan | Sehgal, Aayush | Singh, Sukhbir | Sharma, Neelam | Chigurupati, Sridevi | Ahmed, Amira Saber | Gari, Sreelakshmi Bada V.
The present study was conducted to evaluate the effect of Cochlospermum religiosum (CSR) in animal models of depression and anxiety. The CSR leaves are well known for their sedative, antibacterial, antifungal antioxidant, memory enhancing, anxiolytic and antidepressant potential. In present study, the extract of the leaves is used to relieve the anxiolytic and antidepressant potential. The leaves of CSR were investigated for antidepressant and anxiolytic activities in mice behavioural models namely, spontaneous locomotor activity (SLA), forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM) and marble burying behaviour (MBB). The mechanism was supported by reserpine-induced hypothermia (RIH). Further, the in vivo synergistic evaluation of the CSR leaf extract was evaluated with imipramine and fluoxetine. The treatment of mice with ethanolic extract of CSR leaves for 7 days resulted significant antidepressant and anxiolytic effects (p < 0.05 for 50 mg/Kg p.o / p < 0.01 for 100 mg/kg p.o) with null impact on baseline locomotor activity. Further, the study on rat RIH model revealed that the CSR (50 mg/kg p.o) predominantly antagonized the effect (p < 0.05) of reserpine. Furthermore, synergic action was screened by co-administration of leaf extracts of CSR with fluoxetine (10 mg/Kg, i.p.) and imipramine (10 mg/Kg, i.p.) at below therapeutic dose levels using FST, TST, EPM and MBB. The synergistic effect was significant (p < 0.05) for both antidepressant and anxiolytic activities as compared to therapeutic doses of extract, imipramine and fluoxetine.
اظهر المزيد [+] اقل [-]Protective effects of olive leaf extract against reproductive toxicity of the lead acetate in rats النص الكامل
2021
Ahmed, Harith Abdulrhman | Ali, Huda Abdullah | Mutar, Thulfiqar Fawwaz
Lead acetate (PbAc) is one of the toxic metals in the environment which causes many effects on different organs of the body. And due to the importance of the olive tree, with its healthy and protective elements against many diseases, the leaf extract of this tree was chosen in our study. Therefore, the aim of this study was to investigate the role of olive leaf (Olea europea L.) extract (OLE) against PbAc-induced sperm toxicity, sex hormone changes, oxidative stress, and histopathological changes in rats. Twenty male Wistar rats were divided into four groups (group 1, as control; group 2, OLE; group 3, PbAc; group 4, PbAc+OLE). In the PbAc group, the body weight, testis and epididymis weights, sexual hormones, sperm characteristics, GR, GPx, GST, GSH, SOD, and CAT were significantly decreased, and the sperm abnormality and TBARS level were significant increase when compared with control and OLE groups. Also, numerous damages to testicular tissue were observed in the PbAc group when compared to the control group, while the treatment with OLE in the fourth group led to improvement of sex hormones, semen characteristics, oxidative stress, and testicular tissue damage caused by PbAc. It can be concluded that OLE has a protective and ameliorative effects against PbAc-induced oxidative stress, apoptosis and alterations in testicular tissue, and sperm quality in rats.
اظهر المزيد [+] اقل [-]Sunlight-induced photocatalytic degradation of organic pollutants by biosynthesized hetrometallic oxides nanoparticles النص الكامل
2021
Rani, Manviri | Keshu, | Uma Shanker,
Dyes and phenols are extensively used chemicals in petrochemicals, pharmaceuticals, textile, and paints industries. Due to high persistence, bioaccumulation, and toxicity, their removal from the environment is highly imperative by advanced techniques. Single metal oxide nanomaterials are generally associated with limitations of large bandgap (> 3eV) and charge recombination. Therefore, heterometallic oxides (HMOs) as CuFe₂O₄, CuMn₂O₄, and MnZn₂O₄ have been synthesized via green route by employing leaf extract of Azadirachta indica. XRD revealed the crystalline nature of HMOs nanospheres with particle size less than 100 nm. Subsequently, HMOs nanocatalysts were used as photocatalyst for removal of 3-amino phenols (3-AP) and eriochrome black T (EBT) from water under sunlight. Reaction parameters namely pollutant concentration (50–130 mgL⁻¹), catalyst dose (20–100 mg), and pH (3–11) were optimized in order to get best results. Substantial degradation (80–95%) of pollutants (50 mgL⁻¹) by HMOs (80 mg) was achieved at neutral pH under sunlight exposure. Highest removal by CuFe₂O₄ might be due to its high surface area (35.7 m²g⁻¹), low band gap (2.4 eV), larger particle stability (Zeta potential: -22.0 mV), and lower photoluminescence intensity. Sharp declines in curves were visually confirmed by color change and indicated for first-order kinetics of degradation with initial Langmuir adsorption. Spectrophotometric analysis revealed that half-life (t₁/₂) of 3-AP (0.9-1.7 h) and EBT (0.6-0.8 h) were significantly reduced. Faster degradation of EBT than 3-AP was because of less electronegative N-atom at the diazo group. Scavenger analysis indicated the presence of active radicals in photo-catalytic degradation of 3-AP and EBT. All HMOs have shown high reusability (n=8) which ensures their stability, sustainability, and efficiency. Overall, green synthesized HMOs nanoparticles with prominent surface characteristics offer a viable alternative photocatalyst for industrial applications.
اظهر المزيد [+] اقل [-]In vitro antioxidant, antibacterial, and antihyperlipidemic potential of ethanolic Avicennia marina leaves extract supported by metabolic profiling النص الكامل
2021
Yassien, Eman E. | Hamed, Moaz M. | Abdelmohsen, Usama Ramadan | Hassan, Hanaa M. | Gazwi, Hanaa S. S.
This study aimed to examine the impact of ethanolic Avicennia marina (A. marina) leaves extract against seven pathogenic bacteria and the protective effect of this plant against hyperlipidemia caused by dexamethasone (DEX)-treated rats. Forty-eight male rats weighing between 150 and 200 g were randomly selected into six groups containing eight rats in each group. Moreover, in vitro antioxidant DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, FRAP (ferric reducing antioxidant power), and ABTS assay were also analyzed for leaf extract. Results showed that the IC₅₀ values were observed as 193.9 ± 1.03 μg/mL, 340.29 ± 8.16 μM TE/mg, and 326.8 ± 6.14 μM TE/mg for DPPH, FRAP, and ABTS radical scavenging activities, respectively. A. marina leaves ethanolic extract exhibited higher activity against Candida albicans and Bacillus subtilis, moderate activity against Salmonella typhimurium, and Vibrio damsel. The administration of DEX resulted in significant (P < 0.05) increase in the levels of MDA concentration, TG, TC, LDL, LDH, and glucose but decreased significantly in HDL. Treatment with A. marina extract positively reversed the distorted lipid profile and peroxidation and improved MDA, GSH, NO, and SOD activities in DEX-administered rats. Histological investigation of liver tissue sections showed that the treatment with A. marina leaves extract moderate the fatty change caused by DEX. It is concluded that A. marina leaves extract improved the hypolipidemic property of DEX administration in comparison with standard treatment with atorvastatin.
اظهر المزيد [+] اقل [-]Synthesis and characterisation of stable and efficient nano zero valent iron النص الكامل
2018
Badmus, Kassim O. | Coetsee-Hugo, Elizabeth | Swart, Hendrik | Petrik, Leslie
Nano zero valent iron (nZVI) is an excellent adsorbent/reductant with wide applicability in remediation of persistent contaminants in soil, water and groundwater aquifers. There are concerns about its environmental fate, agglomeration, toxicity and stability in the air. Several modification methods have applied chistosan, green tea, carboxyl methyl cellulose and other coating substances to ensure production of nZVI with excellent air stability and effectiveness. The synthesis of a novel green nZVI (gNZVI) with Harpephyllum caffrum leaf extracts was successfully executed in the current study. Production of gNZVI involved the simultaneous addition of an optimum amount of the NaBH₄ and H. caffrum extract to FeCl₃ in an inert environment (Nitrogen). The solution was stirred for 30 min, washed with dilute ethanol (50%) and freeze dried. This procedure offered the best option for the synthesis of gNZVI in terms of nontoxic and inexpensive choice of stabiliser/reductant. Systematic characterisations using TGA, TEM, SEM, XRD, FT-IR and XPS confirmed the synthesis of crystalline, stable, reactive, well-dispersed and predominantly 50 nm diameter sized gNZVI compared to the conventionally synthesised nZVI which is 65 nm. The activity testing using Orange II sodium salt (OR2) confirmed the effectiveness of the synthesised gNZVI as an excellent Fenton catalyst with 65% degradation of 20 ppm OR2 dye in 1 h reaction time.
اظهر المزيد [+] اقل [-]Iron oxide nanoparticles embedded in organic microparticles from Yerba Mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest – Part 1 النص الكامل
2022
Monje, Dany Santiago | Ruiz, Orlando Simón | Valencia, Gloria Cristina | Mercado, D Fabio
Seven composites of iron oxide nanoparticles embedded in organic microparticles mediated by Cu(II) were synthesized using yerba mate (Ilex paraguariensis) dry leaf extract as precipitant, capping agent, and dispersant medium, using different Cu/Fe molar ratios. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis-mass spectrometry (TGA-MS), Fourier transform infrared spectrometer (FTIR), and atomic absorption-spectrometry (AA) indicates that all materials have spheric-like morphology with nanoparticles composed by metal oxide phases embedded into organic microparticles. Interestingly, this organic matter is proposed to play an important role in the solids’ photocatalytic activity in a photo-Fenton reaction, in which iron photo-leaching was elucidated, and a mechanism through ligand-to-metal charge transfer processes was proposed. All materials showed catalytic activity in the methyl orange elimination, achieving discolorations up to 96% in 2 h under UV irradiation at 375 nm. An experimental correlation between all samples’ UV/Vis spectra and their performances for methyl orange discoloration was observed. This process opens a landscape very interesting for the use of agroindustrial residues for green synthesis of metal oxide nanomaterials and their use and understanding of organo-metallic systems participation in Fenton-based processes.
اظهر المزيد [+] اقل [-]A potential role of green engineered TiO2 nanocatalyst towards enhanced photocatalytic and biomedical applications النص الكامل
2021
Ramasamy, Kawsalya | Dhavamani, Sarathikannan | Natesan, Geetha | Sengodan, Karthik | Sengottayan, Senthil-Nathan | Tiwari, Manish | Shivendra Vikram, Sahi | Perumal, Venkatachalam
This study demonstrates a simple protocol for phytofabrication of titanium dioxide nanoparticles (TiO₂NPs) wrapped with bioactive molecules from Ludwigia octovalvis leaf extract and their characterization by UV-visible absorption spectroscopy, Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectrum (XPS), and diffuse reflectance spectrum (DRS). The bandgap energy of pure green engineered TiO₂ nanoparticles was determined by DRS analysis. The XPS analysis confirmed the purity of the TiO₂ nanoparticles. Results show that the synthesized TiO₂NPs were spherical in shape with the size ranged from 36 to 81 nm. The green engineered titanium oxide nanocatalyst exhibited enhanced rate of photocatalytic degradation of important textile toxic dyes namely crystal violet (93.1%), followed by methylene blue (90.6%), methyl orange (76.7%), and alizarin red (72.4%) after 6-h exposure under sunlight irradiation. Besides, this study determines the antimicrobial efficiency of TiO₂NPs (25 μl and 50 μl), leaf extract (25 μl), and antibiotic (25 μl) against clinically isolated human pathogenic bacterial strains namely Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus epidermidis, and Escherichia coli. Results show that maximum antibacterial activity with nanotitania treatment noticed was 21.6 and 18.3-mm inhibition in case of S. epidermis and P. aeruginosa, respectively. Enhanced rate of antibiofilm activity towards S. aureus and K. pneumoniae was also observed with TiO₂NPs exposure. The biomolecule loaded TiO₂NPs exhibited the fastest bacterial deactivation dynamics towards gram-negative bacteria (E. coli), with a complete bacterial inactivation within 105-min exposure. Interestingly, anticancer activity result indicates that percentage of human cervical carcinoma cell (HeLa) viability was negatively correlated with TiO₂NPs doses used. The AO/EtBr fluorescent staining result exhibited the occurrence of more apoptosis (dead cells) of HeLa cells due to the exposure of TiO₂NPs. Altogether, the present study clearly showed that biomolecules wrapped nanotitania could be used as effective and promising compound for enhanced photocatalytic and biomedical applications in the future.
اظهر المزيد [+] اقل [-]