خيارات البحث
النتائج 1 - 10 من 353
Antibacterial Activity and Cytotoxicity of Spinel Copper Ferrite Nanoparticles Synthesized by using Sol Gel Technique and Lemon Juice as Substrate النص الكامل
2024
Jaafar, Raghad Shubbar | Hammood, Ahmed Yousif
The objective of the present study was to prepare CuFe2O4 ferrite nanoparticles using the sol-gel combustion method, employing lemon juice as a surfactant and energy agent. This method is located within the green chemistry, representing an environmentally friendly and less expensive approach compared to other methods. The nanoparticles were subsequently evaluated as antibacterial agents against different pathogenic bacteria. Before the antibacterial assays, a cytotoxicity test was conducted to evaluate their safety when applied to organisms. The structural, morphological, elemental composition, and magnetic properties of the samples were analyzed using Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-Ray Detection (EDX). The X-ray diffraction patterns confirmed both the phase purity and the particle size to be 24.27 nm. The results demonstrated that the CuFe2O4 nanoparticles exhibited substantial antibacterial activity against both Gram-negative bacteria (Sphingomonas paucimobilis) and Gram-positive bacteria (Staphylococcus lentus and Bacillus subtilis). The antibacterial efficacy was more pronounced against Gram-negative bacteria, with inhibition diameter 5.46mm and 10.64mm at concentrations of 5000 ppm and 10000 ppm, respectively. When making a comparison, the effectiveness against Gram-positive bacteria displayed a slight reduction. Inhibition zones measured 2.76 mm and 8.33 mm for Staphylococcus lentus, while they were 3.58 mm and 5.35 mm for Bacillus subtilis. These measurements were observed at nanoparticle concentrations of 5000 ppm and 10000 ppm, respectively. Furthermore, the study confirmed the safety of the CuFe2O4 nanoparticles by assessing their toxicity on human red blood cell at different concentrations (50, 100,250,500,1000,5000, and 10000 ppm).
اظهر المزيد [+] اقل [-]Preparation and photocatalytic application of ternary Fe3O4/GQD/g-C3N4 heterostructure photocatalyst for RhB degradation. النص الكامل
2022
Mirzaei, Hourieh | Ehsani, Mohammad Hossein | Shakeri, Alireza | Ganjali, Mohammad Reza | Badiei, Alireza
Preparation of an efficient hybrid structure photocatalyst for photocatalytic decomposition has been considered a great option to develop renewable technologies for environmental remediation. Herein, ternary magnetic Fe3O4/GQD/g-C3N4 nanocomposite (FGC) was prepared using the ball mill method. Binary nanocomposites Fe3O4/g-C3N4 (F/CN) and GQD/g-C3N4 (G/CN) were prepared to compare photocatalytic activity with FGC. The performance of photocatalysts for degradation of rhodamine B (RhB) was studied. EDX results showed that Fe3O4, GQD and g-C3N4 nanoparticles (NPs) are uniformly distributed in the FGC. The FGC nanocomposite shows superparamagnetic behaviour with a saturation magnetization of 12 emu. g-1, which makes it favourable compound for magnetic separation procedure. Photocatalytic activity of FGC (100%) was much higher than those of the G/CN (88%) and F/CN (77%) photocatalysts. The superior activity of FGC compared to binary composites was attributed to broader absorption in the visible light band and greater suppression of electron-hole recombination. The photocatalytic degradation of RhB using FGC was consistent with pseudo-first-order kinetics. The reusability of FGC was examined for four runs and no noticeable decrease was observed with the same irradiation time for each run. Finally, it can be argued that FGC photocatalyst can be an efficient semiconductor for the degradation of organic dyes from wastewater.
اظهر المزيد [+] اقل [-]Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water النص الكامل
2022
Abdullah, Thamer Adnan | Juzsakova, Tatjána | Le, Phuoc-Cuong | Kułacz, Karol | Salman, Ali D. | Rasheed, Rashed T. | Mallah, Muhammad Ali | Varga, Béla | Mansoor, Hadeel | Mako, Eva | Zsirka, Balázs | Nadda, Ashok Kumar | Nguyen, X Cuong | Nguyen, D Duc
Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H₂SO₄ and HNO₃, and the oxidized MWCNTS were decorated with magnetite (Fe₃O₄). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.
اظهر المزيد [+] اقل [-]Multi-ionic interaction with magnesium doped hydroxyapatite-zeolite nanocomposite porous polyacrylonitrile polymer bead in aqueous solution and spiked groundwater النص الكامل
2022
G, Alagarsamy | P, Nithiya | R, Sivasubramanian | R, Selvakumar
Removal of multi-ionic contaminants from water resources has been a major challenge faced during the treatment of water for drinking and industrial applications. In the present study, varying composition of magnesium doped hydroxyapatite (Mg-HAp) and zeolite nanocomposite embedded porous polymeric beads were synthesized using solvent displacement method and its sorption efficiency towards multi-ion contaminant (such as Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Tl, Th, U, V and Zn) was investigated in aqueous solution and spiked groundwater. The prepared beads were characterized using suitable techniques like high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) equation. The surface area and pore radius of the beads varied from 6.996 to 66.469 m²/g and 1.698–3.960 nm respectively according to the composition of the bead. The control bead without nanocomposite showed maximum surface area. Multi-ion adsorptions onto beads were confirmed using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) and X-ray photoelectron spectrophotometer (XPS). The sorption efficiency was high at pH 5 owing to its anionic surface charge leading to an increase in affinity towards the cations. For validating field application, selected high performance beads were tested in multi-ion spiked groundwater. The results indicated that the Mg-HAp nanocomposite bead dominate all the other bead compositions with more than 90% removal efficiency for most of the multi-ion contaminants. The feasible adsorption mechanism has been discussed. This adsorption study revealed that the Mg-HAp nanocomposite bead is a promising material that is cost-effective, non-toxic, biodegradable, eco-friendly and highly efficient towards the removal of multi-ionic contaminants from groundwater.
اظهر المزيد [+] اقل [-]Graphene-based nanocomposites and nanohybrids for the abatement of agro-industrial pollutants in aqueous environments النص الكامل
2022
Farhan, Ahmad | Rashid, Ehsan Ullah | Waqas, Muhammad | Ahmad, Haroon | Navāz, Shāhid | Munawar, Junaid | Rahdar, Abbas | Varjani, Sunita | Vēlāyutan̲, T. A.
Incessant release of a large spectrum of agro-industrial pollutants into environmental matrices remains a serious concern due to their potential health risks to humans and aquatic animals. Existing remediation techniques are unable to remove these pollutants, necessitating the development of novel treatment approaches. Due to its unique structure, physicochemical properties, and broad application potential, graphene has attracted a lot of attention as a new type of two-dimensional nanostructure. Given its chemical stability, large surface area, electron mobility, superior thermal conductivity, and two-dimensional structure, tremendous research has been conducted on graphene and its derived composites for environmental remediation and pollution mitigation. Various methods for graphene functionalization have facilitated the development of different graphene derivatives such as graphene oxide (GO), functional reduced graphene oxide (frGO), and reduced graphene oxide (rGO) with novel attributes for multiple applications. This review provides a comprehensive read on the recent progress of multifunctional graphene-based nanocomposites and nanohybrids as a promising way of removing emerging contaminants from aqueous environments. First, a succinct overview of the fundamental structure, fabrication techniques, and features of graphene-based composites is presented. Following that, graphene and GO functionalization, i.e., covalent bonding, non-covalent, and elemental doping, are discussed. Finally, the environmental potentials of a plethora of graphene-based hybrid nanocomposites for the abatement of organic and inorganic contaminants are thoroughly covered.
اظهر المزيد [+] اقل [-]A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity النص الكامل
2021
Bavani, Thirugnanam | Madhavan, Jagannathan | Prasad, Saradh | AlSalhi, Mohamad S. | AlJaafreh, Mamduh J.
Herein, an efficient visible-light-driven BiFeO₃/AgVO₃ nanocomposite was effectively fabricated via a facile co-precipitation procedure. The physicochemical properties of BiFeO₃/AgVO₃ nanocomposites were investigated via Fourier transform-infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV visible diffuse reflectance spectroscopy (DRS) and photoelectrochemical studies (PEC). The photocatalytic activity (PCA) of BiFeO₃/AgVO₃ nanocomposites was assessed with regard to the photocatalytic degradation of Rhodamine-B (RhB) when subjected to visible light irradiation (VLI). Upon 90 min of illumination, the optimal 3%-BiFeO₃/AgVO₃ nanocomposite showed a greater photocatalytic degradation, which was ∼3 times higher than the bare AgVO₃. The lower PL intensity of 3%-BiFeO₃/AgVO₃ nanocomposite exposed the low recombination rate, which improved the photo-excited charge carriers separation efficiency. The experimental outcomes showed that the BiFeO₃/AgVO₃ nanocomposite might be an encouraging material for treatment of industrial and metropolitan wastewater. Moreover, a plausible RhB degradation mechanism was proposed proving the participation of the generated OH and O₂– radicals in the degradation over BiFeO₃/AgVO₃ nanocomposite.
اظهر المزيد [+] اقل [-]Nickel decorated manganese oxynitride over graphene nanosheets as highly efficient visible light driven photocatalysts for acetylsalicylic acid degradation النص الكامل
2021
Mohan, Harshavardhan | Yoo, Suhwan | Thimmarayan, Srivalli | Oh, Hyeon Seung | Kim, Gitae | Seralathan, Kamala-Kannan | Shin, Taeho
In this work, we prepared nanocomposites of nickel-decorated manganese oxynitride on graphene nanosheets and demonstrated them as photocatalysts for degradation of acetylsalicylic acid (ASA). The catalyst exhibited a high degradation efficiency over ASA under visible light irradiation and an excellent structural stability after multiple uses. Compared to manganese oxide (MnO) and manganese oxynitride (MnON) nanoparticles, larger specific surface area and smaller band gap were observed for the nanocomposite accounting for the enhanced photocatalytic efficiency. Besides the compositional effect of the catalyst, we also examined the influence of various experimental parameters on the degradation of ASA such as initial concentration, catalyst dose, initial pH and additives. The best performance was obtained for the nanocomposite when the catalyst dose was 10 mg/mL and the initial pH 3. Detection of intermediates during photocatalysis showed that ASA undergoes hydroxylation, demethylation, aromatization, ring opening, and finally complete mineralization into CO₂ and H₂O by reactive species. For practical applications as a photocatalyst, cytotoxicity of the nanocomposite was also evaluated, which revealed its insignificant impact on the cell viability. These results suggest the nanocomposite of nickel-decorated manganese oxynitride on graphene nanosheets as a promising photocatalyst for the remediation of ASA-contaminated water.
اظهر المزيد [+] اقل [-]A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite - Application to uranium sorption from ore leachate النص الكامل
2020
Galhoum, Ahmed A. | Eisa, Wael H. | El-Tantawy El-Sayed, Ibrahim | Tolba, Ahmad A. | Shalaby, Zeinab M. | Mohamady, Said I. | Muhammad, Sally S. | Hussien, Shimaa S. | Akashi, Takaya | Guibal, Eric
A high-energy ball milling of magnetite nanoparticles with amino-phosphonic functionalized poly(glycidyl methacrylate) polymer is used for manufacturing a highly efficient magnetic sorbent for U(VI) sorption from aqueous solutions. The Uranyl ions were adsorbed through the binding with amine and phosphonic groups as confirmed by Fourier Transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The maximum sorption capacity (up to 270 mg U g⁻¹) occurred at pH = 3–4; Langmuir isotherm well describes the sorption process. Small-size particles allow achieving fast uptake (within ≈90 min of contact); and the kinetic profiles are modeled by the pseudo-second order rate equation. Uranium is successfully desorbed from loaded sorbent using 0.25 M NaHCO₃ solution: Sorbent can be recycled with minimal decrease in sorption and desorption efficiency for at least 6 cycles. The sorbent is efficiently used for U(VI) recovery from the acidic leachates of U-bearing ores (after precipitation pre-treatment). Sorption capacity approaches 190 mg U g⁻¹ despite the presence of high concentrations of Fe and Si: the sorbent has a marked preference for U(VI) (confirmed by distribution ratios and selectivity coefficients).
اظهر المزيد [+] اقل [-]Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles النص الكامل
2020
Olusegun, Sunday J. | Mohallem, Nelcy D.S.
Kaolinite supported CoFe₂O₄ (KCF) was synthesized and employed to adsorb doxycycline (DOX), an antibiotic and Congo red (CR), a dye from aqueous solution. The prepared KCF nanocomposite was treated in a muffle furnace at 300, 500 and 700 °C, and thereafter characterized. X-ray diffractogram revealed structural damage of kaolinite and appearance of distinct peaks of CoFe₂O₄ with an increase in calcination temperature, while transmission electron microscopy (TEM) images showed that CoFe₂O₄ nanoparticles were supported on the lamellar surface of kaolinites. Comparative adsorption mechanism of the two targeted contaminants showed that adsorption of DOX was influenced by hydrogen bond and n-π interaction, while that of CR was due to hydrophobic interaction and hydrogen bond. However, the adsorption of the two contaminants was best fitted to the isotherm that was proposed by Langmuir, with a monolayer maximum adsorption capacity of 400 mg g⁻¹ at 333 K for DOX, and 547 mg g⁻¹ at 298 K for CR. The removal of DOX from aqueous solution was favored by an increase in temperature (endothermic), while that of CR was exothermic. Thermodynamics studies confirmed that the adsorption of the two contaminants is feasible and spontaneous. The presence of natural organic matter (NOM) did not affect the removal of the two contaminants. Regeneration and reusability study showed that KCF is economically viable. Therefore, introducing inorganic particles like cobalt ferrite into the matrix of kaolinites provides a composite with promising adsorption capacity.
اظهر المزيد [+] اقل [-]Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles النص الكامل
2020
Salam, Mohamed Abdel | AbuKhadra, Mostaf R. | Mohamed, Aya S.
Pieces of glass as solid wastes were recycled in the synthesis of highly order MCM-41 that decorated by green fabricated Co₃O₄ nanoparticles using the green extract of green tea leaves forming novel green nano-composite. The synthetic Co₃O₄/MCM-41 exhibit high surface area, low bandgap energy (1.63 eV), and typical spherical morphology decorated by Co₃O₄ nanoparticles. The composite was evaluated as green photocatalyst in effective oxidation of methyl parathion pesticide in the presence of a visible light source. The degradation results revealed complete removal of 50 mg/L and 100 mg/L after 60 min and 90 min, respectively using 0.25 of the catalyst at pH 8. The detection of the TOC in the treated methyl parathion solution gives strong indications about the formation of organic intermediate compounds during the oxidation steps. The main detected intermediate compound are C₆H₅OH(NO₂), C₆H₅OH, (CH₃O)₃P(S), C₆H₄(OH)₂, C₆H₃(OH)₃, C₆H₄(NH₂)OP(O)(OCH₃)₂, (CH₃O)₂P(O)OH, (CH₂)₂C(OH)OH(CHO)OC(O), and HO₂C(CH₂)₂C(O)CHO. The detected intermediate compounds converted into SO₄²⁻, PO₄³⁻, NO₃⁻, and CO₂ under the extensive photocatalytic of them over Co₃O₄/MCM-41. The oxidizing species trapping test verified the controlling of the methyl parathion degradation pathway by the hydroxyl radicals. Finally, the composite showed significant reusability properties and applied five times in the oxidation of methyl parathion with considerable degradation percentages.
اظهر المزيد [+] اقل [-]