خيارات البحث
النتائج 1 - 10 من 273
The first plastic produced, but the latest studied in microplastics research: The assessment of leaching, ecotoxicity and bioadhesion of Bakelite microplastics
2022
Klun, Barbara | Rozman, Ula | Ogrizek, Monika | Kalčíková, Gabriela
Bakelite, the first synthetic plastic, is a rather unexplored material in the field of ecotoxicology, despite its long production and use. The aim of this study was to investigate the ecotoxicity of Bakelite microplastics (before and after leaching) and its leachates on four aquatic organisms: the crustacean Daphnia magna, the plant Lemna minor, the bacterium Allivibrio fischeri and the alga Pseudokirchneriella subcapitata. Bakelite microplastics before and after leaching and leachates affected all organisms, but to varying degrees. Leachates showed increased ecotoxicity to Daphnia magna, while Pseudokirchneriella subcapitata was more affected by particles. For Lemna minor and Allivibrio fischeri, the effects of particles before leaching and leachate were comparable, while the negative effect of particles after leaching was minimal or not present. All leachates were analysed, and phenol and phenol-like compounds were the predominant organics found. In addition, bioadhesion of Bakelite microplastics to the surface of Daphnia magna and Lemna minor was confirmed, but the particles were mainly weakly adhered. Results of this study suggest that, in addition to the recently studied microplastics from consumer products (e.g. from polyethylene and polystyrene), microplastics from industrial plastics such as Bakelite may be of increasing concern, primarily due to leaching of toxic chemicals.
اظهر المزيد [+] اقل [-]Insights into phenol monomers in response to electron transfer capacity of humic acid during corn straw composting process
2022
Zhao, Xinyu | Zhang, Chuanyan | Dang, Qiuling | Xi, Beidou
Quinone is the important redox functional group for electron transfer capacity (ETC) of humic acid (HA). Lignin, as major component in corn straw, can be decomposed into phenol monomers, then oxidation into quinones for synthesis of HA during composting process. However, it is still unclear that the effects of type and variation characteristics of phenol monomers on redox characteristics of HA during straw composting process. In this study, p-hydroxybenzoic acid (P1), vanillic acid (P2), syringic acid (P3), p-hydroxy benzaldehyde (P4), 4-coumaric acid (P5), 4-hydroxyacetophenone (P6), ferulic acid (P7) and 4-hydroxy-3-methylacetophenone (P8) were recognized and clustered into three groups. The concentration of polyphenol presented a significant downward trend during the straw composting process. Based on the relationships among phenol monomers to ETC, electron donating capacity (EDC), electron accepting capacity (EAC) and quinone, we found that P1, P2, P3, P5 and P7 were significantly related to ETC, EDC and EAC of HA (P < 0.05). Furthermore, NH₄⁺-N and NO₃⁻-N were the main micro-environmental factors linking to ETC-related phenol monomers and redox characteristics of HA in straw composts (P < 0.05). Finally, two groups of core microflora that promoting the ETC-related phenol monomers and NH₄⁺-N, and ETC-related phenol monomers and NO₃⁻-N were identified by Mantel test, respectively. This study contributes a new insight for polyphenol way for redox capacity of HA in traditional composting and utilization of straw compost in contaminated environments.
اظهر المزيد [+] اقل [-]Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
اظهر المزيد [+] اقل [-]Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater
2022
Kumar, Vaidyanathan Vinoth | Venkataraman, Swethaa | Kumar, P Senthil | George, Jenet | Rajendran, Devi Sri | Shaji, Anna | Lawrence, Nicole | Saikia, Kongkona | Rathankumar, Abiram Karanam
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO₄ (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S⁻¹mM⁻¹ for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
اظهر المزيد [+] اقل [-]Association between phenols and thyroid hormones: The role of iodothyronine deiodinase genes
2022
Sarzo, Blanca | Abumallouh, Reem | Marín, Natalia | Llop, Sabrina | Beneito, Andrea | Lopez-Flores, Inmaculada | Ferrero, Nerea | Sakhi, Amrit Kaur | Ballester, Ferran | Lopez-Espinosa, Maria-Jose
Previous literature on prenatal phenol exposure and thyroid hormone (TH) alteration is conflicting, and the possible mechanisms of action involved remain unclear. We aimed to examine the association between prenatal phenol exposure and levels of maternal and neonatal THs, as well as the possible role of iodothyronine deiodinase (DIO) gene polymorphisms in this relation. We studied 387 Spanish mother–neonate pairs with measurements of maternal phenols, total triiodothyronine (TT3) and free thyroxine (FT4), maternal and neonatal thyroid-stimulating hormone (TSH), and maternal genotypes for single nucleotide polymorphisms in the DIO1(rs2235544) and DIO2(rs12885300) genes. We implemented multivariate linear and weighted quantile sum (WQS) regressions to examine the association between phenols and THs (including sex-stratified models for neonatal TSH) and investigated effect modification of genotypes in the maternal phenol-TH associations. In single exposure models, we found negative associations between maternal triclosan (TCS) and neonatal TSH (% change [95%CI]: −2.95 [-5.70, -0.11], per twofold phenol increase) – stronger for girls – and less clearly for maternal ethylparaben (EPB) and TSH (−2.27 [-4.55, 0.07]). In phenol mixture models, we found no association with THs. In the genetic interaction models, we found some evidence of effect modification of DIO gene polymorphisms with stronger negative associations between methylparaben (MPB), propylparaben (PPB), butylparaben (BPB) and TT3 as well as bisphenol A (BPA) and FT4 for DIO1(rs2235544)-CC. Stronger inverse associations for genotypes DIO2(rs12885300)-CC and DIO2(rs12885300)-CT and positive ones for DIO2(rs12885300)-TT were also reported for BPA and FT4. In conclusion, we found some evidence of an association between phenols and TSH during pregnancy and at birth in single exposure models, the latter being stronger for girls. Since no association was observed between maternal levels of phenols and TT3 or FT4, the possible role of the genetic background in these associations warrants further investigation.
اظهر المزيد [+] اقل [-]Phenols in soils and agricultural products irrigated with reclaimed water
2021
Li, Yan | Liu, Honglu | Zhang, Lei | Lou, Chunhua | Wang, Yitong
The presence of phenols, such as nonylphenol (NP), bisphenol (BPA), and octylphenol (OP), in the environment have been receiving increased attention due to their potential risks to human health and environment. The use of reclaimed water for irrigation may be one of the sources of these phenols in the agricultural system. A field experiment was conducted to assess the effects of reclaimed water irrigation on phenol contamination of agricultural topsoil and products in the North China Plain between 2015 and 2016. Three irrigation treatments were applied to all crops: reclaimed water irrigation, groundwater irrigation and alternative irrigation with reclaimed water and groundwater (1:1, v/v). The results showed that the concentrations of NP, BPA, and OP in the topsoil were 0.02–0.54, 0.004–0.06, and ND–9.9 × 10⁻³ mg/kg, respectively; the corresponding values in agricultural products were 0.007–0.70, 0.004–0.24, and ND–1.08 mg/kg, respectively. The concentration of NP in the topsoil and agricultural products and that of BPA in the agricultural products were all less than the recommended limits. The yields of wheat, maize, vegetables were 4.35–7.08, 1.03–6.46, and 10.9–67.0 t/ha, respectively. The bioaccumulation factors (BCFs) of OP, NP, and BPA for cereals were 0.7–4.77, 0.16–4.59, and 1.3–23.9, respectively; the corresponding values in vegetables were 0.0–4.53 (except cucumber and eggplant), 0.38–12.6, and 0.57–24.3, respectively. No significant differences in phenol concentrations, BCFs, or yields of wheat and vegetables were observed among the three irrigation treatments. In conclusion, compared with groundwater irrigation, reclaimed water irrigation in this experiment did not significantly affect phenol concentrations in the topsoil and agricultural products as well as BCFs and yields of wheat and vegetables. However, because the quality of reclaimed water may vary across collected areas, additional experiments are warranted to analyze the effects of reclaimed water irrigation on the risk of phenol contamination.
اظهر المزيد [+] اقل [-]Could biotransport be an important pathway in the transfer of phenol derivatives into the coastal zone and aquatic system of the Southern Baltic?
2020
Staniszewska, Marta | Nehring, Iga | Falkowska, Lucyna | Bodziach, Karina
Bird guano and the faeces of marine mammals appear to be a significant yet undisclosed biotransporter of Endocrine Disrupting Compounds in the marine environment. The authors determined the concentration of bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) removed from birds and seals in their droppings into the coastal zone of the Gulf of Gdansk (Southern Baltic Sea).The research was carried out on samples of bird guano collected during the breeding season and after in 2016 at nesting sites, as well as on faecal samples from grey seals (Halichoerus grypus grypus) living in the Seal Centre of the Marine Station in Hel between 2014 and 2018. Measurements were carried out using high performance chromatography with fluorescence detector. Results have shown that the presence of seabird habitats and grey seal colonies in the coastal zone of the Gulf of Gdansk can have an impact on the pollution of the seashore (beach sand, bottom sediment and surface seawater) with phenol derivatives. The concentrations of BPA, 4-t-OP and 4-NP ranged from 0.1 to 32.97 ng∙g⁻¹dw in sediment and beach sand, and from 0.23 to over 800 ng dm⁻³ in seawater. In the cases of bisphenol A and 4-tert-octylphenol safe concentration levels in the waters were exceeded. Bisphenol A concentrations were almost always found to be the highest. This was also noted in bird guano and seal faeces, although it was found to be much higher in the seal faeces - average 10149.79 ng g⁻¹ dw, than in bird guano. An experiment conducted to assess BPA, 4-t-OP, 4-NP leaching from bird guano and seal faeces into seawater, also confirmed the importance of animal excrement in the circulation of these compounds in the marine ecosystem. The highest % of leaching related to BPA was noted at 20 °C and reached 84%. The lowest % of leaching was for 4-nonylphenol (44%).
اظهر المزيد [+] اقل [-]Linear and nonlinear partition of nonionic organic compounds into resin ADS-21 from water
2019
Zhou, Chenkai | Qi, Long | Lin, Daohui | Yang, Kun
The predominance of natural organic matter (NOM) in nonlinear sorption of nonionic organic compounds (NOCs) is a fundamental behavior that controlling the fate, transfer and bioavailability of NOCs in natural environment. There is a debate, i.e., whether the nonlinear sorption is captured by nonlinear partition mechanism or adsorption mechanism. The debate has been going on for decades because characteristics of nonlinear partition are still unknown due to the lack of an adsorbent that can partition NOCs nonlinearly. We find a resin ADS-21, with specific surface area undetectable (<0.5 m² g⁻¹) but high sorption capacity for NOCs (up to 1000 mg g⁻¹ for phenol as an example), is an ideal adsorbent for examining characteristics of nonlinear partitioning. This resin has nonlinear isotherms for phenols and anilines but linear isotherms for polycyclic aromatic hydrocarbons and nitrobenzenes. The observed positively linear relationship of sorption capacities of NOCs with NOCs solubility in water or octanol, could be one of the characteristics of nonlinear partition. Moreover, competitive sorption and no desorption hysteresis could be observed for the nonlinear partition. Hydrogen-bonding of phenols and anilines with ADS-21 is responsible for nonlinear partition, competitive sorption and isotherm nonlinearity. These evidences would be supportive for understanding nonlinear partition and the nonlinear sorption of NOCs by NOM.
اظهر المزيد [+] اقل [-]High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals
2019
Yu, Fangke | Tao, Ling | Cao, Tianyi
The aim of this work was to develop a new modified graphite felt (GF) as carbonaceous cathode for electro-Fenton (EF) application loaded with nitrogen-doped porous carbon (NPC) carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as carbon precursor. At initial pH 7, the highest generation rate of H₂O₂ was 0.74 mg h⁻¹ cm⁻² by applying 12.5 mA cm⁻² by modified cathode, but in the same condition, the GF only had 0.067 mg h⁻¹ cm⁻². The production efficiency increased 10 times. Additionally, phenol (50 mg L⁻¹) could be largely removed by NPC modified cathode, the mineralization ratio and TOC reached 100% and 82.61% at 120 min of optimization condition, respectively. The NPC cathode kept its stability after 5 cycles. The materials were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and linear sweep voltammetry (LSV). The results demonstrated that a homogenous NPC covered the carbon-based material GF. The existing graphitic-N and sp² carbon of NPC promoted the electron transfer between carbon surface and oxygen molecules, as well as accelerated the oxygen reduction reaction (ORR) and the modified graphite felt had much higher electrocatalytic activity. In this work, several manufacturing parameters like the current, pH and load of NPC were optimized. The optimized design could improve the efficiency of new cathode with in situ electro-chemical production of H₂O₂ and significantly offer a potential material for degradation of organic pollutants.
اظهر المزيد [+] اقل [-]Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants
2018
Although organic species are transported and efficiently transformed in clouds, more than 60% of this organic matter remains unspeciated. Using GCxGC-HRMS technique we were able to detect and identify over 100 semi-volatile compounds in 3 cloud samples collected at the PUY station (puy de Dôme mountain, France) while they were present at low concentrations in a very small sample volume (<25 mL of cloud water). The vast majority (∼90%) of the detected compounds was oxygenated, while the absence of halogenated organic compounds should be specially mentioned. This could reflect both the oxidation processes in the atmosphere (gas and water phase) but also the need of the compounds to be soluble enough to be transferred and dissolved in the cloud droplets. Furans, esters, ketones, amides and pyridines represent the major classes of compounds demonstrating a large variety of potential pollutants. Beside these compounds, priority pollutants from the US EPA list were identified and quantified. We found phenols (phenol, benzyl alcohol, p-cresole, 4-ethylphenol, 3,4-dimethylphenol, 4-nitrophenol) and dialkylphthalates (dimethylphthalate, diethylphthalate, di-n-butylphthalate, bis-(2-ethylhexyl)-phthalate, butylbenzylphthalate, di-n-octyl phthalate). In general, the concentrations of phthalates (from 0.09 to 52 μg L−1) were much higher than those of phenols (from 0.03 to 0.74 μg L−1). To our knowledge phthalates in clouds are described here for the first time. We investigated the variability of phenols and phthalates concentrations with cloud air mass origins (marine vs continental) and seasons (winter vs summer). Although both factors seem to have an influence, it is difficult to deduce general trends; further work should be conducted on large series of cloud samples collected in different geographic areas and at different seasons.
اظهر المزيد [+] اقل [-]