خيارات البحث
النتائج 1 - 10 من 53
Seasonal variation in release characteristics and mechanisms of sediment phosphorus to the overlying water in a free water surface wetland, southwest China النص الكامل
2022
Liang, Qibin | Chen, Ting | Wang, Yanxia | Gao, Lei | Hou, Lei
Geochemical cycling of iron (Fe) mediated by sediment microbes drives the remobilization of phosphorus (P). Understanding the underlying mechanism is essential for the evaluation of P retention by wetlands. The diffusive gradients in thin film (DGT) and 16S rDNA sequencing techniques were combined to explore seasonal variations in the remobilization mechanism of sediment P in a free water surface wetland in southwest China. A significantly positive correlation between labile P and Fe concentrations was found from the sediment profiles, indicating coupled remobilization of Fe and P in the sediment. Fe-reducing bacterial genera, particularly Sphingomonas and Geothermobacter, were responsible for the reductive dissolution of Fe oxides and subsequent P release in sediment. The efflux of sediment P was higher in the rainy season (95 ± 87 ng cm⁻² d⁻¹) than in the dry season (39 ± 29 ng cm⁻² d⁻¹). Based on the significantly positive relationship between the efflux and total concentration of sediment P, we propose a promising regression equation for quantifying the release risk of sediment P. The Luoshijiang Wetland exhibited a higher release potential as indicated by a greater regression slope (0.558) compared to the other water bodies (0.055), which was mainly attributed to the lower labile Fe:P molar ratio in the sediment. Based on estimations of the diffusive flux of P at the sediment-water interface, sediment contributed more than 172 and 413 g of P per day to the water column in the dry and rainy seasons, respectively, accounting for 14.0% and 1.9% of the P mass in the surface water of the wetland.
اظهر المزيد [+] اقل [-]Fate of dissolved inorganic nitrogen in turbulent rivers: The critical role of dissolved oxygen levels النص الكامل
2022
Liu, Ming | He, Yixin | Cao, Li | Zhi, Yue | He, Xianjin | Li, Tao | Wei, Yanyan | Yuan, Xiaobing | Liu, Bingsheng | He, Qiang | Li, Hong | Miao, Xiaojun
Dissolved inorganic nitrogen (DIN) is considered the main factor that induces eutrophication in water, and is readily influenced by hydrodynamic activities. In this study, a 4-year field investigation of nitrogen dynamics in a turbulent river was conducted, and a laboratory study was performed in the approximately homogeneous turbulence simulation system to investigate potential mechanisms involved in DIN transformation under turbulence. The field investigation revealed that, contrary to NO⁻₃ dynamics, the NH⁺₄ concentrations in water were lower in flood seasons than in drought seasons. Further laboratory results demonstrated that limitation of dissolved oxygen (DO) caused inactive nitrification and active denitrification in static river sediment. In contrast, the increased DO levels in turbulent river intensified the mineralization of organic nitrogen in sediment; moreover, ammonification and nitrification were activated, while denitrification was first activated and then depressed. Turbulence therefore decreased NH⁺₄ and NO⁻₂ concentrations, but increased NO⁻₃ and total DIN concentrations in the overlying water, causing the total DIN to increase from 0.4 mg/L to maximum of 1.0 and 1.7 mg/L at low and high turbulence, respectively. The DIN was maintained at 0.7 and 1.0 mg/L after the 30-day incubation under low and high turbulence intensities (ε) of 3.4 × 10⁻⁴ and 7.4 × 10⁻² m²/s³, respectively. These results highlight the critical role of DO in DIN budgets under hydrodynamic turbulence, and provide new insights into the DIN transport and transformation mechanisms in turbulent rivers.
اظهر المزيد [+] اقل [-]Effect of algal blooms outbreak and decline on phosphorus migration in Lake Taihu, China النص الكامل
2022
Wang, Jiehua | Zhou, Yunkai | Bai, Xiuling | Li, Wenchao
Algal blooms (ABs) can affect the migration of phosphorus (P) among sediments, interstitial water and overlying water. It is important to analyze the characteristics of P and their interactions in the three media during ABs. A 5-month field study (June to October in 2016) was conducted in Zhushan Bay of Lake Taihu. P fractions, P adsorption characteristics and P diffusion fluxes at the sediment-water interface (SWI) were investigated. During the outbreak period of ABs from June to August, labile P concentrations in the sediment measured by diffusive gradients in thin films (DGT-labile P) and its diffusion fluxes across the SWI increased significantly. The equilibrium P concentration (EPC₀) of the sediment was higher than the PO₄³⁻-P concentration in the overlying water. During the period of decline of ABs from September to October, the concentrations and diffusion fluxes of DGT-labile P sharply decreased. However, the sediment total P (TP), overlying water TP, total dissolved P (TDP) and PO₄³⁻-P concentrations increased. These results show that the ability of sediment solids to supplement interstitial water labile P was significantly enhanced by the outbreak of ABs. Labile P was then intensively released into the overlying water by interstitial water. Degraded algae became a crucial P source during the period of decline of ABs. P from the degraded algae was re-released to the sediment and overlying water. The observed DGT-labile P and DGT-labile Fe coupling in June, September and October confirmed the Fe redox-driven P release mechanism in sediment during these periods. The decoupling of DGT-labile P and DGT-labile Fe was observed in July and August and was probably caused by algal decomposition, labile organic P degradation and/or sulfate reduction in sediment stimulated by the ABs outbreak.
اظهر المزيد [+] اقل [-]Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading النص الكامل
2021
Li, Yang | Wang, Ligong | Chao, Chuanxin | Yu, Hongwei | Yu, Dan | Liu, Chunhua
Intensive aquaculture has largely changed the global phosphorus (P) flow and become one of the main reasons for the eutrophication of global aquatic ecosystem. Artificial planting submerged macrophytes has attracted enormous interest regarding the restoration of eutrophic lakes. However, few large-scale (>80 km²) studies have focused on the restoration of aquatic vegetation in the subtropical lakes, and the mechanism underlying the restrain of sediment P release by macrophytes remains unknown. In this study, field surveys and the diffusive gradients in thin films (DGT) technique were used to elucidate the effects of macrophytes on internal P loading control in a typical eutrophic aquacultural lake. Results showed that half of the P content in overlying water and sediments, particularly dissolved P in overlying water and calcium bound P (Ca–P) in sediment, were removed after restoration. Temperature, as well as dissolved oxygen (DO) and P concentration gradients near the sediment-water interface (SWI) jointly controlled the release of labile P from surface sediments. Submerged macrophytes can effectively inhibit the release of sediment P into the overlying water, which depended on DO concentration in the bottom water. Future restoration projects should focus on the temperature response of submerged macrophytes of different growth forms (especially canopy-forming species) to avoid undesirable restoration effects. Our results complement existing knowledge about submerged macrophytes repairing subtropical P-contaminated lakes and have positive significance for lake restoration by in situ phytoremediation.
اظهر المزيد [+] اقل [-]Benthic hypoxia in anthropogenically-impacted rivers provides positive feedback enhancing the level of bioavailable metals at sediment-water interface النص الكامل
2020
Jaiswal, Deepa | Pandey, Jitendra
We investigated the effect of hypoxic-anoxic range of dissolved oxygen (DO) on metal release/bioavailability at sediment-water interface (SWI) in the Ganga River. Here, we consider eight sites in the main river stem along 518 km; sixty sites downstream two point sources and two tributary confluences covering 630 km; and an incubation experiment to verify these results. We found higher concentrations of metals and bioavailable fractions at SWI at two locations of main stem and up to 700 m, 1000 m, 400 m and 500 m downstream Assi drain, Wazidpur drain, Ramganga confluence and Varuna confluence respectively where DO at SWI (DOₛw) was <2.0 mgL⁻¹. The incubation experiment did show higher levels of metal- and P-release and bioavailability under anoxic-hypoxic range of DO. The risk assessment code and eutrophication index indicated high to very high risks of contaminated river sediment and water to aquatic environment at sites with hypoxic-anoxic range of DOₛw. Further, the principal component analyses separated metals and bioavailable fractions opposite to FDAase indicating greater risk at these locations. The study, which forms the first report on benthic hypoxia/anoxia-driven metal release, potential bioavailability and risk to the Ganga River ecosystem will help understanding how human-driven perturbations influence geochemical cycling of metals and ecosystem responses in large rivers.
اظهر المزيد [+] اقل [-]Remobilization and bioavailability of polycyclic aromatic hydrocarbons from estuarine sediments under the effects of Nereis diversicolor bioturbation النص الكامل
2018
Sun, Nan | Chen, Yanli | Xu, Shuqin | Zhang, Ying | Fu, Qiang | Ma, Lixin | Wang, Qi | Chang, Yuqing | Man, Zhe
The effects of Nereis diversicolor bioturbation on the remobilization and bioavailability of polycyclic aromatic hydrocarbons from estuarine sediment were determined after 60 d in a laboratory experiment. The release fluxes and mass transfer coefficients showed that bioturbation by N. diversicolor can lead to a significant remobilization of polycyclic aromatic hydrocarbons (PAHs) from estuarine sediments. Bioturbation enhanced the release of PAHs from sediment to water by accelerating the transport of sediment particles to the sediment-water interface followed by PAHs desorption to the water. The bioavailability of PAHs was described by SPMD-sediment accumulation factors (SSAF). The SSAF of low molecular weight PAHs with bioturbation was significantly higher than that of PAHs without bioturbation, and there were no significant variations in high-molecular-weight PAHs. Our results revealed that N. diversicolor bioturbation significantly increased PAHs release from sediment to water but only increased the bioavailability of low-molecular-weight PAHs.
اظهر المزيد [+] اقل [-]Distribution and speciation of mercury affected by humic acid in mariculture sites at the Pearl River estuary النص الكامل
2018
Ding, Lingyun | Zhao, Kaiyun | Zhang, Lijuan | Liang, Peng | Wu, Shengchun | Wong, Ming Hung | Tao, Huchun
At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L−1 d−1) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system.
اظهر المزيد [+] اقل [-]High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments النص الكامل
2016
Gao, Yulu | Liang, Tao | Tian, Shuhan | Wang, Lingqing | Holm, Peter E. | Bruun Hansen, Hans Christian
A thorough understanding of the labile status and dynamics of phosphorus (P) and iron (Fe) across the sediment-water interface (SWI) is essential for managing internal P release in eutrophic lakes. Fe-coupled inactivation of P in sediments is an important factor which affects internal P release in freshwater lakes. In this study, two in-situ high-resolution diffusive gradients in thin films (DGT) techniques, Zr-Oxide DGT and ZrO-Chelex DGT, were used to investigate the release characteristics of P from sediments in a large freshwater lake (Dongting Lake, China; area of 2691 km2) experiencing a regional summer algal bloom. Two-dimensional distributions of labile P in sediments were imaged with the Zr-Oxide DGT without destruction of the original structure of the sediment layer at four sites of the lake. The concentration of DGT-labile P in the sediments, ranging from 0.007 to 0.206 mg L−1, was highly heterogeneous across the profiles. The values of apparent diffusion flux (Fd) and release flux (Fr) of P varied between −0.027–0.197 mg m−2 d−1 and 0.037–0.332 mg m−2 d−1, respectively. Labile P showed a high and positive correlation (p < 0.01) with labile Fe(II) in the profiles, providing high-resolution evidence for the key role of Fe-redox cycling in labile P variation in sediments.
اظهر المزيد [+] اقل [-]Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada) النص الكامل
2009
Canário, João | Poissant, Laurier | O'Driscoll, Nelson | Vale, Carlos | Pilote, Martin | Lean, D. R. S. (David R. S)
An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (HgP) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake. In a frozen lake Hg is released from contaminated sediments mainly due to gas ebullition and molecular diffusion plays a minor role.
اظهر المزيد [+] اقل [-]Effects of mercury, organic carbon, and microbial inhibition on methylmercury cycling at the profundal sediment-water interface of a sulfate-rich hypereutrophic reservoir النص الكامل
2021
Fuhrmann, Byran C. | Beutel, Marc W. | O’Day, Peggy A. | Tran, Christian | Funk, Andrew | Brower, Sarah | Pasek, Jeffery | Seelos, Mark
Methylmercury (MeHg) produced by anaerobic bacteria in lakes and reservoirs, poses a threat to ecosystem and human health due to its ability to bioaccumulate in aquatic food webs. This study used 48-hr microcosm incubations of profundal sediment and bottom water from a sulfate-rich, hypereutrophic reservoir to assess seasonal patterns of MeHg cycling under various treatments. Treatments included addition of air, Hg(II), organic carbon, and microbial inhibitors. Both aeration and sodium molybdate, a sulfate-reducing bacteria (SRB) inhibitor, generally decreased MeHg concentration in microcosm water, likely by inhibiting SRB activity. The methanogenic inhibitor bromoethanesulfonate increased MeHg concentration 2- to 4- fold, suggesting that methanogens were potent demethylators. Pyruvate increased MeHg concentration under moderately reduced conditions, likely by stimulating SRB, but decreased it under highly reduced conditions, likely by stimulating methanogens. Acetate increased MeHg concentration, likely due to the stimulation of acetotrophic SRB. Results suggest that iron-reducing bacteria (IRB) were not especially prominent methylators and MeHg production at the sediment-water interface is elevated under moderately reduced conditions corresponding with SRB activity. In contrast, it is suppressed under oxic conditions due to low SRB activity, and under highly reduced conditions (<-100 mV) due to enhanced demethylation by methanogens.
اظهر المزيد [+] اقل [-]