خيارات البحث
النتائج 1 - 10 من 515
Water Quality Assessment in Urban Wetlands and Suitability for Fish Habitat: A Case Study
2021
Dixit, Arohi | Siva Siddaiah, Neelam | Singh Chauhan, Jogindar | Ullah Khan, Waseem
In this study, water from three urban wetlands of Gurugram – Sultanpur (WS), Damdama (WD), and Basai (WB), was studied for various physicochemical parameters to assess their suitability for the healthy survival of fishes and the results were compared with the limits of these parameters for fish farming. The parameters studied were colour, temperature, pH, alkalinity, hardness, Ca2+- Mg2+ ratio, NO3-, Cl-, SO42-, PO43-, and heavy metals (Fe, Mn, Cr, Cu, Zn, Ni and Pb). The results of the study indicate the majority of studied parameters are beyond the desirable limits in WB; thus, water is most unsuitable for fishes in WB. WB is unsuitable for parameters: colour, alkalinity, hardness, Ca -Mg ratio, NO3-, Cl-, SO42-, PO43-, Cr, Cu, Fe, Mn, Ni and Zn. WS needs consideration for temperature, NO3-, Cu, Ni and Zn, whereas WD needs improvement in temperature, TDS, NO3-, Cr, Cu, Fe, Mn, Ni and Zn concentration for better fish growth. Most of the parameters are high in summer as compared to winter, which is due to the dilution after rainfall. Hence, we recommend timely action for effective measures to improve the water quality of wetlands and their regular monitoring for improved fish habitat.
اظهر المزيد [+] اقل [-]The use of duckweed for wastewater treatment.
1988
Zirschky J. | Reed S.C.
Biovectoring of plastic by white storks from a landfill to a complex of salt ponds and marshes
2023
Cano-Povedano, Julián | López-Calderón, Cosme | Sánchez, Marta I. | Hortas Rodríguez-Pascual, Francisco | Cañuelo-Jurado, Belén | Martín-Vélez, Víctor | Ros Clemente, Macarena | Cózar Cabañas, Andrés | Green, Andy J. | Biología
Research into plastic pollution has extensively focused on abiotic vectors, overlooking transport by animals. Opportunistic birds, such as white storks (Ciconia ciconia) often forage on landfills, where plastic abounds. We assess plastic loading by ingestion and regurgitation of landfill plastic in Cadiz Bay, a major stopover area for migratory white storks in south-west Spain. On average, we counted 599 storks per day moving between a landfill and a complex of salt ponds and marshes, where they regurgitated pellets that each contained a mean of 0.47 g of plastic debris, dominated by polyethylene. Modelling reliant on GPS tracking estimated that 99 kg and >2 million particles of plastic were biovectored into the wetland during 2022, with seasonal peaks that followed migration patterns. GPS data enabled the correction of field censuses and the identification of plastic deposition hotspots. This study highlights the important role that biovectoring plays in plastic transport into coastal wetlands.
اظهر المزيد [+] اقل [-]Accumulation of commonly used agricultural herbicides in coral reef organisms from iSimangaliso Wetland Park, South Africa
2022
Tyohemba, Raymond L. | Humphries, Marc S. | Schleyer, M. H. | Porter, Sean N.
Coral reefs are amongst the most biodiverse ecosystems on earth, but are significantly impacted by agricultural runoff. Despite herbicides being commonly detected in coastal waters, the possibility of herbicide accumulation in coral reef species has largely been overlooked. We investigate the accumulation of several herbicides in five species of coral reef invertebrates collected from ten sites along the Maputaland coast, South Africa. Multiple herbicide residues were detected in 95% of the samples, with total average concentrations across sites ranging between 25.2 ng g⁻¹ to 51.3 ng g⁻¹ dw. Acetochlor, alachlor and hexazinone were the predominant herbicides detected at all sites, with atrazine and simazine detected less frequently. Significant interactive effects were detected between sites nested in reef complex crossed with species, based on multiple and total herbicide concentrations. In general, multivariate herbicide concentrations varied significantly between species within and across most sites. Contrastingly, the concentrations of the different herbicides and that of total herbicide did not differ between conspecifics at most sites nested in their respective reef complexes. On average, highest total herbicide concentrations were measured in soft coral (Sarcophyton glaucum; 90.4 ± 60 ng g⁻¹ and Sinularia gravis; 42.7 ± 25 ng g⁻¹) and sponge (Theonela swinhoei; 39.0 ± 40 ng g⁻¹) species, while significantly lower concentrations were detected in hard corals (Echinopora hirsutissima; 10.5 ± 5.9 ng g⁻¹ and Acropora austera; 5.20 ± 4.5 ng g⁻¹) at most sites. Agricultural runoff entering the ocean via the uMfolozi-St Lucia Estuary and Maputo Bay are likely sources of herbicide contamination to coral reefs in the region. There is an urgent need to assess the long-term effects of herbicide exposure on coral reef communities.
اظهر المزيد [+] اقل [-]Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
اظهر المزيد [+] اقل [-]A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops
2022
Cao, Hong Wei | Zhao, Ya Ning | Liu, Xue Song | Rono, Justice Kipkorir | Yang, Zhi Min
Cadmium (Cd) is an environmentally polluted toxic heavy metal and seriously risks food safety and human health through food chain. Mining genetic potentials of plants is a crucial step for limiting Cd accumulation in rice crops and improving environmental quality. This study characterized a novel locus in rice genome encoding a Cd-binding protein named OsHIPP16, which resides in the nucleus and near plasma membrane. OsHIPP16 was strongly induced by Cd stress. Histochemical analysis with pHIPP16::GUS reveals that OsHIPP16 is primarily expressed in root and leaf vascular tissues. Expression of OsHIPP16 in the yeast mutant strain ycf1 sensitive to Cd conferred cellular tolerance. Transgenic rice overexpressing OsHIPP16 (OE) improved rice growth with increased plant height, biomass, and chlorophyll content but with a lower degree of oxidative injury and Cd accumulation, whereas knocking out OsHIPP16 by CRISPR-Cas9 compromised the growth and physiological response. A lifelong trial with Cd-polluted soil shows that the OE plants accumulated much less Cd, particularly in brown rice where the Cd concentrations declined by 11.76–34.64%. Conversely, the knockout oshipp16 mutants had higher levels of Cd with the concentration in leaves being increased by 26.36–35.23% over the wild-type. These results suggest that adequate expression of OsHIPP16 would profoundly contribute to Cd detoxification by regulating Cd accumulation in rice, suggesting that both OE and oshipp16 mutant plants have great potentials for restricting Cd acquisition in the rice crop and phytoremediation of Cd-contaminated wetland soils.
اظهر المزيد [+] اقل [-]A catastrophic change in a european protected wetland: From harmful phytoplankton blooms to fish and bird kill
2022
Demertzioglou, Maria | Genitsaris, Savvas | Mazaris, Antonios D. | Kyparissis, Aris | Voutsa, Dimitra | Kozari, Argyri | Kormas, Konstantinos Ar | Stefanidou, Natassa | Katsiapi, Matina | Michaloudi, Evangelia | Moustaka-Gouni, Maria
Understanding the processes that underlay an ecological disaster represents a major scientific challenge. Here, we investigated phytoplankton and zooplankton community changes before and during a fauna mass kill in a European protected wetland. Evidence on gradual development and collapse of harmful phytoplankton blooms, allowed us to delineate the biotic and abiotic interactions that led to this ecological disaster. Before the mass fauna kill, mixed blooms of known harmful cyanobacteria and the killer alga Prymnesium parvum altered biomass flow and minimized zooplankton resource use efficiency. These blooms collapsed under high nutrient concentrations and inhibitory ammonia levels, with low phytoplankton biomass leading to a dramatic drop in photosynthetic oxygenation and a shift to a heterotrophic ecosystem phase. Along with the phytoplankton collapse, extremely high numbers of red planktonic crustaceans-Daphnia magna, visible through satellite images, indicated low oxygen conditions as well as a decrease or absence of fish predation pressure. Our findings provide clear evidence that the mass episode of fish and birds kill resulted through severe changes in phytoplankton and zooplankton dynamics, and the alternation on key abiotic conditions. Our study highlights that plankton-related ecosystem functions mirror the accumulated heavy anthropogenic impacts on freshwaters and could reflect a failure in conservation and restoration measures.
اظهر المزيد [+] اقل [-]Enrichment differences and source apportionment of nutrients, stable isotopes, and trace metal elements in sediments of complex and fragmented wetland systems
2021
Ji, Zehua | Long, Ziwei | Zhang, Yu | Wang, Youke | Qi, Xinyu | Xia, Xinghui | Pei, Yuansheng
Anthropogenic activities significantly influence the lake environment and are reflected by the element contents in sediments/soils. The lake fragmentation provides a unique opportunity for comparing the influences of natural/anthropogenic activities of different wetlands systems. In this study, a complex and fragmented lake was investigated, and sediment/soil samples were collected from different systems. The nutrient contents (C, N, and P), stable isotopic compositions (δ¹³C and δ¹⁵N), and trace metal contents (As, Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments/soils were measured to determine the natural and anthropogenic influences and pollution sources. Lake fragmentation was caused by insufficient water input and long-term agricultural and aquacultural activities of local residents. Due to the effect of anthropogenic activities, the enrichment conditions of various elements differed significantly for different wetland systems. Industrial, agricultural, and biological sources significantly influenced the element enrichment in different systems. The results demonstrated that the anthropogenic activities significantly influenced the sediments/soils in wetland systems, and the lake fragmentation reduced the diffusion of the contaminants. These results provide accurate reference information for pollution control, lake management, and ecological restoration.
اظهر المزيد [+] اقل [-]Assessment of extrinsic and intrinsic influences on water quality variation in subtropical agricultural multipond systems
2021
Chen, Wenjun | Nover, Daniel | Xia, Yongqiu | Zhang, Guangxin | Yen, Haw | He, Bin
Understanding wetland water quality dynamics and associated influencing factors is important to assess the numerous ecosystem services they provide. We present a combined self-organizing map (SOM) and linear mixed-effects model (LMEM) to relate water quality variation of multipond systems (MPSs, a common type of non-floodplain wetlands in agricultural regions of southern China) to their extrinsic and intrinsic influences for the first time. Across the 6 test MPSs with environmental gradients, ammonium nitrogen (NH₄⁺-N), total nitrogen (TN), and total phosphate (TP) almost always exceeded the surface water quality standard (2.0, 2.0, and 0.4 mg/L, respectively) in the up- and midstream ponds, while chlorophyll-a (Chl-a) exhibited hypertrophic state (≥28 μg/L) in the midstream ponds during the wet season. Synergistic influences explained 69±12% and 73±10% of the water quality variations in the wet and dry season, respectively. The adverse, extrinsic influences were generally 1.4, 6.9, 3.2, and 4.3 times of the beneficial, intrinsic influences for NH₄⁺-N, nitrate nitrogen (NO₃⁻-N), TP, and potassium permanganate index (CODMₙ), respectively, although the influencing direction and degree of forest and water area proportion were spatiotemporally unstable. While CODMₙ was primarily linked with rural residential areas in the midstream, higher TN and TP concentrations in the up- and midstream were associated with agricultural land, and NH₄⁺-N reflected a small but non-negligible source of free-range poultry feeding. Pond surface sediments exhibited consistent, adverse effects with amplifications during rainfall, while macrophyte biomass can reflect the biological uptake of CODMₙ and Chl-a, especially in the mid- and downstream during the wet season. Our study advances nonpoint source pollution (NPSP) research for small water bodies, explores nutrient “source-sink” dynamics, and provides a timely guide for rural planning and pond management. The modelling procedures and analytical results can inform refined assessment of similar NFWs elsewhere, where restoration efforts are required.
اظهر المزيد [+] اقل [-]Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta
2021
Cui, Hao | Bai, Junhong | Du, Shudong | Wang, Junjing | Keculah, Ghemelee Nitta | Wang, Wei | Zhang, Guangliang | Jia, Jia
Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO₂ emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO₂ emission of 146.52 ± 13.66 μmol m⁻²s⁻¹ for deeper water table wetlands, 105.09 ± 13.48 μmol m⁻²s⁻¹ for medium water table wetlands and 54.32 ± 10.02 μmol m⁻²s⁻¹ for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.
اظهر المزيد [+] اقل [-]