خيارات البحث
النتائج 451 - 460 من 7,351
Relevance of tyre wear particles to the total content of microplastics transported by runoff in a high-imperviousness and intense vehicle traffic urban area النص الكامل
2022
Goehler, Luiza Ostini | Moruzzi, Rodrigo Braga | Tomazini da Conceição, Fabiano | Júnior, Antônio Aparecido Couto | Speranza, Lais Galileu | Busquets, Rosa | Campos, Luiza Cintra
Microplastics (MPs) are an emerging pollutant and a worldwide issue. A wide variety of MPs and tyre wear particles (TWPs) are entering and spreading in the environment. TWPs can reach waterbodies through runoff, where main contributing particulate matter comes from impervious areas. In this paper, TWPs and other types of MPs that were transported with the runoff of a high populated-impervious urban area were characterised. Briefly, MPs were sampled from sediments in a stormwater detention reservoir (SDR) used for flood control of a catchment area of ∼36 km², of which 73% was impervious. The sampled SDR is located in São Paulo, the most populated city in South America. TWPs were the most common type of MPs in this SDR, accounting for 53% of the total MPs; followed by fragments (30%), fibres (9%), films (4%) and pellets (4%). In particular, MPs in the size range 0.1 mm–0.5 mm were mostly TWPs. Such a profile of MPs in the SDR is unlike what is reported in environmental compartments elsewhere. TWPs were found at levels of 2160 units/(kg sediment·km² of impervious area) and 87.8 units/(kg sediment·km street length); MP and TWP loadings are introduced here for the first time. The annual flux of MPs and TWPs were 7.8 × 10¹¹ and 4.1 × 10¹¹ units/(km²·year), respectively, and TWP emissions varied from 43.3 to 205.5 kg/day. SDRs can be sites to intercept MP pollution in urban areas. This study suggests that future research on MP monitoring in urban areas and design should consider both imperviousness and street length as important factors to normalize TWP contribution to urban pollution.
اظهر المزيد [+] اقل [-]Insights into the effects of salinity on the sorption and desorption of legacy and emerging per-and polyfluoroalkyl substances (PFASs) on marine sediments النص الكامل
2022
Yin, Chao | Pan, Chang-Gui | Xiao, Shao-Ke | Wu, Qi | Tan, Hong-Ming | Yu, Kefu
Per-and polyfluoroalkyl substances (PFASs) have attracted extensive attention since this century due to their wide distribution, persistence, bioaccumulation/biomagnification potential, and (eco)toxicity. In the present study, we investigated the sorption kinetics, sorption isotherms and desorption behaviors of legacy and emerging PFASs with different chain lengths and functional end groups onto marine sediments at four different salinities (0, 10, 20, and 30 practical salinity units (psu)). Results revealed that the sorption of PFASs onto sediment can be well described by the pseudo-second-order kinetic model. PFASs sorption was influenced by both compound-specific and solution-specific parameters. The distribution coefficient (Kd) for PFASs were increased with the increase of perfluorocarbon chain length and salinity, suggesting that hydrophobic and electrostatic interactions were involved in the adsorption process. 6:2 FTSA showed the lowest adsorption among PFASs with eight carbon atoms (6:2 FTSA, PFOA and PFOS). The increase of perfluorocarbon chain length of PFASs and salinity would result in the decrease of desorption rate of PFASs from sediment. In addition, PFCAs were desorbed more easily from the sediment than the PFSAs with the same perfluorocarbon chain length at all salinity groups. The present study demonstrated that salinity can apparently influence the fate of PFASs in aquatic environment and provided valuable data for modeling the fate of PFASs in real environment.
اظهر المزيد [+] اقل [-]The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption النص الكامل
2022
Schönemann, Alexandre M. | Moreno Abril, Sandra Isabel | Diz, Angel P. | Beiras, Ricardo
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 10⁵-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
اظهر المزيد [+] اقل [-]Anthocyanin-mediated arsenic tolerance in plants النص الكامل
2022
Ahammed, Golam Jalal | Yang, Youxin
Plants detoxify toxic metal(loid)s by accumulating diverse metabolites. Beside scavenging excess reactive oxygen species (ROS) induced by metal(loid)s, some metabolites chelate metal(loid) ions. Classically, thiol-containing compounds, especially glutathione (GSH) and phytochelatins (PCs) are thought to be the major chelators that conjugate with metal(loid)s in the cytoplasm followed by transport and sequestration in the vacuole. In addition to this classical detoxification pathway, a role for secondary metabolites in metal(loid) detoxification has recently emerged. In particular, anthocyanins, a kind of flavonoids with ROS scavenging potential, contribute to enhanced arsenic tolerance in several plant species. Evidence is accumulating that, in analogy to GSH and PCs, anthocyanins may conjugate with arsenic followed by vacuolar sequestration in the detoxification event. Exogenous application or endogenous accumulation of anthocyanins enhances arsenic tolerance, leading to improved plant growth and productivity. The application of some plant hormones and signaling molecules stimulates endogenous anthocyanin synthesis which confers tolerance to arsenic stress. Anthocyanin biosynthesis is transcriptionally regulated by several transcription factors, including myeloblastosis (MYBs). The light-regulated transcription factor elongated hypocotyl 5 (HY5) also affects anthocyanin biosynthesis, but its role in arsenic tolerance remains elusive. Here, we review the mechanism of arsenic detoxification in plants and the potential role of anthocyanins in arsenic tolerance beyond the classical points of view. Our analysis proposes that anthocyanin manipulation in crop plants may ensure sustainable crop yield and food safety in the marginal lands prone to arsenic pollution.
اظهر المزيد [+] اقل [-]Phthalate and DINCH urinary concentrations across pregnancy and risk of preterm birth النص الكامل
2022
Yland, Jennifer J. | Zhang, Yu | Williams, Paige L. | Mustieles, Vicente | Vagios, Stylianos | Souter, Irene | Calafat, Antonia M. | Hauser, Russ | Messerlian, Carmen
Preconception and prenatal exposure to phthalates has been associated with an increased risk of preterm birth. However, it is unclear whether there are periods of heightened susceptibility during pregnancy. This prospective cohort study included 386 women undergoing fertility treatment who gave birth to a singleton infant during 2005 through 2018. Eleven phthalate metabolites were measured in spot urine samples collected at each trimester. In approximately 50% of participants, two metabolites of 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), a phthalate substitute, were also measured. The molar sum of four di(2-ethylhexyl) phthalate metabolites (∑DEHP) was calculated. We evaluated the associations of mean maternal biomarker concentrations with risk of preterm birth using modified log-binomial models and utilized multiple informant models to compare trimester-specific associations. We examined the relative biomarker concentration across gestation comparing women with preterm birth to women with term delivery using quadratic mixed model. The risk ratio for preterm birth associated with a one-unit increase in the natural log-transformed urinary concentrations of ∑DEHP (mean during pregnancy) was 1.21 (95% confidence interval (CI): 0.84, 1.72). In multiple informant models, these associations were strongest in the third trimester (RR = 1.51; 95% CI: 1.17, 1.95). Estimated mean ∑DEHP concentrations were higher among women with preterm than term delivery, especially late in gestation. Associations with preterm birth were also observed for each of the four individual DEHP metabolites. Detection of cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), a metabolite of DINCH, appeared to be positively related to preterm birth. In this prospective cohort of subfertile couples, maternal ∑DEHP metabolite concentrations during pregnancy were associated with an increased risk of preterm birth, particularly during late gestation.
اظهر المزيد [+] اقل [-]Efficient biodegradation of phenanthrene using Pseudomonas stutzeri LSH-PAH1 with the addition of sophorolipids: Alleviation of biotoxicity and cometabolism studies النص الكامل
2022
Luo, Chengyi | Hu, Xin | Bao, Mutai | Sun, Xiaojun | Li, Fengshu | Li, Yiming | Liu, Wenxiu | Yang, Yan
Phenanthrene (PHE) is widely distributed, and it can cause genotoxicity in humans by interacting with enzymes in the body. A current challenge for PHE bioremediation is the inhibitory effect of biotoxic intermediates on bacterial growth. Notably, the aerobic biotransformation processes for PHE in the presence of sophorolipids have been poorly studied. Here, a PHE-degrading strain was isolated from sediments and identified as Pseudomonas stutzeri and named LSH-PAH1. It was observed that 1-naphthol (a biotoxic substance that can inhibit strain growth) was produced during the PHE metabolism process of LSH-PAH1. The biodegradation ratio increased from 21.4% to 91.7% within 48 h after the addition of sophorolipids. Unexpectedly, this addition accelerated the metabolic process for 1-naphthol rather than causing its accumulation. The cometabolism of 1-naphthol and sophorolipids alleviated the biotoxic effects for the strain, which was verified by gene expression analysis. We identified a new PHE-degrading strain and provided a mechanism for PHE biodegradation using LSH-PAH1 with the addition of sophorolipids, which provides a reference for practical applications of the bioremediation of PHE and study of the cometabolism of biotoxic intermediates.
اظهر المزيد [+] اقل [-]Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides النص الكامل
2022
Tan, Wen-Tao | Zhou, Hang | Tang, Shang-Feng | Zeng, Peng | Gu, Jiao-Feng | Liao, Bo-Han
Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron–manganese oxides could be introduced into biochar. In this study, iron–manganese (Fe–Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS). Adsorption kinetics showed that the maximum adsorption capacity of BC-FM for Cd(II) was 120.77 mg/g at 298 K, which was approximately 1.5–10 times the amount of adsorption capacity for Cd(II) by potassium-modified or manganese-modified biochar as mentioned in the literature. The Cd(II) adsorption of BC-FM was well fit by the pseudo-second-order adsorption and Langmuir models, and it was a spontaneous and endothermic process. Adsorption was mainly controlled via a chemical adsorption mechanism. Moreover, BC-FM could maintain a Cd removal rate of approximately 50% even when reused three times. Cd(II) capture by BC-FM was facilitated by coprecipitation, surface complexation, electrostatic attraction, and cation-π interaction. Additionally, the loaded Fe–Mn oxides also played an important role in the removal of Cd(II) by redox reaction and ion exchange in BC-FM. The results suggested that BC-FM could be used as an efficient adsorbent for treating Cd-contaminated wastewater.
اظهر المزيد [+] اقل [-]Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment النص الكامل
2022
Cheng, Tangying | Li, Jinjin | Ma, Xiuwei | Zhou, Lei | Wu, Hao | Yang, Linjun
The objective of this work was to evaluate the adsorption capacity of alkylated modified porous biochar prepared by esterification and etherification (PSAC-2) for low concentrate volatile organic compounds (VOCs, toluene and ethyl acetate) in high humidity environment by experiments and theoretical calculations. Results showed that PSAC-2 has a large specific surface area and weak surface polarity, at 80% relative humidity, its capacities for toluene and ethyl acetate adsorption could be maintained at 92% and 87% of the initial capacities (169.9 mg/g and 96.77 mg/g). The adsorption behaviors of toluene, ethyl acetate, and water vapor were studied by adsorption isotherms, and isosteric heat was obtained. The desorption activation energy was obtained by temperature programmed desorption experiment. The outcomes manifested that the PSAC-2 can achieve strong adsorption performance for weakly polar molecules. Through density functional theory (DFT) simulations, owing to the interaction of hydrogen bonds, oxygen-containing groups became a significant factor influencing the adsorption of VOCs in humid environments. These results could provide an important reference for VOCs control in a high humidity environment.
اظهر المزيد [+] اقل [-]The effects of different temperatures in mercury toxicity to the terrestrial isopod Porcellionides pruinosus النص الكامل
2022
Morgado, Rui G. | Pereira, Andreia | Cardoso, Diogo N. | Prodana, Marija | Malheiro, Catarina | Silva, Ana Rita R. | Vinhas, André | Soares, Amadeu M.V.M. | Loureiro, Susana
Climate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms. Here, toxicity and bioaccumulation experiments were replicated at 15 °C, 20 °C, and 25 °C to understand how sub-optimal temperatures affect the toxicokinetics and toxicodynamics of Hg via soil. Genotoxicity and energy reserves were also assessed to disclose potential trade-offs in life-history traits. Results underpin the complexity of temperature-Hg interactions. Survival was determined mainly by toxicokinetics, but toxicodynamics also played a significant role in defining survival probability during early stages. The processes determining survival probability were faster at 25 °C: General Unified Threshold of Survival (GUTS) model identified an earlier/steeper decline in survival, compared to 20 °C or 15 °C, but it also approached the threshold faster. Despite potentiation of Hg genotoxicity, temperature promoted faster detoxification, either increasing toxicokinetics rates or damage repair mechanisms. This metabolism-driven increase in detoxification led to higher depletion of energy reserves and likely triggered stress response pathways. This work emphasized the need for comprehensive experimental approaches that can integrate the multiple processes involved in temperature-metal interactions.
اظهر المزيد [+] اقل [-]DNA metabarcoding reveals human impacts on macroinvertebrate communities in polluted headwater streams: Evidence from the Liao River in northeast China النص الكامل
2022
Li, Feilong | Wang, Shuping | Zhang, Yuan | Zhang, Nan | Cai, Yanpeng | Yang, Zhifeng
Headwater streams are a hotspot of freshwater biodiversity, carrying indispensable resource pools of aquatic species. However, up to now, there remain many challenges to accurately and efficiently characterize the responses of this vulnerable ecosystem to human-induced changes. Here, we collected macroinvertebrate data from 12 different headwater streams in the Liao River of northeast China by DNA metabarcoding approach, to reveal biodiversity changes and ecological thresholds affected by human beings. Our data showed that the community composition and structure of headwater streams had unique and significant differences under human impacts, and 5-day biological oxygen demand (BOD₅) and ammonia nitrogen (NH₃–N) were the key variables explaining the variation in community structure. Although α diversity had a unimodal relationship with nutrients and organic loads, β diversity and its turnover component (species replacement) increased significantly. In addition, 22 and 33 indicative taxa were identified to have significant negative responses to BOD₅ and NH₃–N, respectively, and the change points derived from Threshold Indicator Taxa Analysis (TITAN) for the negative response of their frequency and abundance were BOD₅ >3.42 mg/L and NH₃–N >0.14 mg/L. Overall, this study reveals the biodiversity changes in headwater streams from the aspects of α and β diversity, and also determines the thresholds of BOD₅ and NH₃–N pollutants for one reach at one date from 12 headwater streams, suggesting the potential of DNA metabarcoding approach for threshold analyses in headwater streams.
اظهر المزيد [+] اقل [-]