خيارات البحث
النتائج 821 - 830 من 7,921
Seasonal variations in the mass characteristics and optical properties of carbonaceous constituents of PM2.5 in six cities of North China
2021
Luo, Lining | Tian, Hezhong | Liu, Huanjia | Bai, Xiaoxuan | Liu, Wei | Liu, Shuhan | Wu, Bobo | Lin, Shumin | Zhao, Shuang | Hao, Yan | Sun, Yujiao | Hao, Jiming | Zhang, Kai
Carbonaceous constituents have various adverse impacts on human health, visibility, and climate change. Although comprehensive studies on the characteristics of carbonaceous constituents have been conducted recently, systematic studies covering both the mass characteristics and light-absorption properties of carbonaceous constituents on a regional scale in China are quite limited. In this study, current seasonal measurements of organic carbon (OC) and elemental carbon (EC) in PM₂.₅ were investigated during autumn and winter (1–30 October 2017 and December 18, 2017 to January 17, 2018) in six selected cities located at the eastern foot of the Taihang Mountains: Beijing, Baoding, Shijiazhuang, Handan, Xinxiang, and Zhengzhou. Seasonal variations were similar when Beijing was excluded. The lowest concentrations of OC (18.33 ± 9.39 μg/m³) and EC (7.66 ± 5.64 μg/m³) were observed in Xinxiang (autumn) and Beijing (winter), respectively, while the highest concentrations of OC (38.43 ± 62.10 μg/m³) and EC (12.24 ± 24.67 μg/m³) occurred in Baoding during winter mainly due to elevated fuel combustion for space heating. The results of the potential source contribution function (PSCF) analysis suggested that border zones between several provinces in North China should be highlighted in order to strengthen pollution control. Moreover, by separating the optical properties of brown carbon from those of black carbon, we were able to estimate the contributions of brown carbon to the PM₂.₅ total light-absorption coefficient. The results show that the brown carbon absorption coefficient (at 405 nm) in winter at six sites accounted for 21.2%, 33.3%, 34.7%, 39.1%, 48.6%, and 23.3% of the PM₂.₅ light absorption, which are values that are comparable to the contribution of black carbon in Xinxiang. These results provide a more comprehensive understanding of carbonaceous constituents on a regional scale.
اظهر المزيد [+] اقل [-]Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil
2021
Wang, Xia | Fang, Linchuan | Beiyuan, Jingzi | Cui, Yongxing | Peng, Qi | Zhu, Shilei | Wang, Man | Zhang, Xingchang
Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.
اظهر المزيد [+] اقل [-]Modeling the fate and human health impacts of pharmaceuticals and personal care products in reclaimed wastewater irrigation for agriculture
2021
Shahriar, Abrar | Tan, Junwei | Sharma, Priyamvada | Hanigan, David | Verburg, Paul | Pagilla, Krishna | Yang, Yu
Wastewater reclamation and reuse for agriculture have attracted a great deal of interest, due to water stress caused by rapid increase in human population and agricultural water demand as well as climate change. However, the application of treated wastewater for irrigation can lead to the accumulation of pharmaceuticals and personal care products (PPCPs) in the agricultural crops, grazing animals, and consequently to human dietary exposure. In this study, a model was developed to simulate the fate of five PPCPs; triclosan (TCS), carbamazepine (CBZ), naproxen (NPX), gemfibrozil (GFB), and fluoxetine (FXT) during wastewater reuse for agriculture, and potential human dietary exposure and health risk. In a reclaimed wastewater-irrigated grazing farm growing alfalfa, it took 100–535 days for PPCPs to achieve the steady-state concentrations of 1.43 × 10⁻⁶, 4.73 × 10⁻⁵, 1.17 × 10⁻⁶, 1.53 × 10⁻⁵, and 7.38 × 10⁻⁶ mg/kg for TCS, CBZ, NPX, GFB, and FXT in soils, respectively. The accumulated concentration of PPCPs in the plant (alfalfa) and grazing animals (beef) ranged 2.86 × 10⁻⁷− 4.02 × 10⁻³ and 4.39 × 10⁻¹⁵− 6.27 × 10⁻⁷ mg/kg, respectively. Human dietary exposure to these compounds through beef consumption was calculated to be 1.67 × 10⁻¹⁸− 1.74 × 10⁻¹⁰ mg/kg bodyweight/d, much lower than the acceptable daily intake (ADI). Similar results were obtained for a ‘typical’ reclaimed wastewater irrigated farm based on the typical setup using our model. Screening analysis showed that PPCPs with relatively high LogD value and lower ratios of degradation rate (in soils) to plant uptake have a greater potential to be transferred to humans and cause potential health risks. We established a modeling method for evaluating the fate and human health effects of PPCPs in reclaimed wastewater reuse for the agricultural system and developed an index for screening PPCPs with high potential to accumulate in agricultural products. The model and findings are valuable for managing water reuse for irrigation and mitigating the harmful effects of PPCPs.
اظهر المزيد [+] اقل [-]Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology
2021
de Oliveira Klein, Mariana | Serrano, Sergio V. | Santos-Neto, Álvaro | da Cruz, Claudinei | Brunetti, Isabella Alves | Lebre, Daniel | Gimenez, Maíse Pastore | Reis, Rui M. | Silveira, Henrique C.S.
The use of chemotherapy agents has been growing worldwide, due to the increase number of cancer cases. In several countries, mainly in Europe countries, these drugs have been detected in hospitals and municipal wastewaters. In Brazil this issue is poorly explored. The main goal of this study was to assess the presence of three anti-cancer drugs, 5-fluorouracil (5-FU), gemcitabine (GEM) and cyclophosphamide (CP), and two metabolites, alpha-fluoro-beta-alanine (3-NH₂-F) and 2′-deoxy-2′,2′-difluorouridine (2-DOH-DiF), in effluents from a large cancer hospital, in the municipal wastewater treatment plant (WWTP) influent and effluent, and also to evaluate toxicity of the mixtures of these compounds by ecotoxicological testing in zebrafish. The sample collections were performed in Barretos Cancer Hospital of the large cancer center in Brazil. After each collection, the samples were filtered for subsequent Liquid Chromatography Mass Spectrometry analysis. The presence of CP, GEM, and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected in the hospital wastewater and the WWTP influent. Three drugs, GEM, 2-DOH-DiF and CP, were detected in the WWTP effluent. Two drugs were detected below the limit of quantification, 2-DOH-DiF: <LOQ (above 1400 ng L⁻¹) and CP: <LOQ (above 300 ng L⁻¹), and GEM was quantified at 420 ng L⁻¹. Furthermore, 2-DOH-DiF (116,000 ng L⁻¹) was detected at the highest level in the hospital wastewater. There were no zebrafish deaths at any of the concentrations of the compounds used. However, we observed histological changes, including aneurysms and edema in the gills and areas of necrosis of the liver. In summary, we found higher concentrations of CP, GEM and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected for the first time. There is currently no legislation regarding the discharge of anti-cancer drugs in effluents in Brazil. This study is first to focus on effluents from specific treatments from a large cancer hospital located in small city in Brazil.
اظهر المزيد [+] اقل [-]Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk
2021
Fry, K.L. | Gillings, M.M. | Isley, C.F. | Gunkel-Grillon, P. | Taylor, Mark Patrick
Metallurgical industries remain a considerable source of trace element contamination and potential human health risk. Determination of sources is a key challenge. With respect to the South Pacific's largest and longest operating metallurgic smelter in Nouméa, New Caledonia, determining the environmental impact and subsequent human health risk associated with local ferronickel smelting is complicated by natural geological enrichment of Ni and Cr. This study applies a multi-method and multi-matrix approach to disentangle smelter emissions from geogenic sources and model the consequent health risk from industrial activity. Dust wipes (n = 108), roadside soil (n = 91), garden soil (n = 15) and household vacuum dust (n = 39) were assessed to explore geospatial trace element (As, Cr, Cu, Fe, Mn, Ni, Pb, S, V and Zn) variations across outdoor and indoor environments. Enrichment factors (EF) identified elevated levels of smelter-related trace elements: S (EF = 7), Ni (EF = 6) and Cr (EF = 4), as well as Zn (EF = 4). Smelter-related elements in soil and dust deposits were negatively correlated with distance from the facility. Similarity of Pb isotopic compositions between dust wipes, surface soil and vacuum dust indicated that potentially toxic trace elements are being tracked into homes. Non-carcinogenic health risk modelling (Hazard Index, HI) based on 15 spatial nodes across Nouméa revealed widespread exceedance of tolerable risk for children (0–2 years) for Ni (HI 1.3–15.8) and Mn (HI 0.6–1.8). Risk was greatest near the smelter and to the north-west, in the direction of prevailing wind. Given the elevated cancer risk documented in New Caledonia, disentanglement of environmental from industrial sources warrants further attention to ensure community health protection. Our analysis illustrates how the confounding effects from complex environmental factors can be distilled to improve the accuracy of point source apportionment to direct future mitigation strategies.
اظهر المزيد [+] اقل [-]Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall
2021
Zhang, Yongji | Zhang, Yingyu | Liu, Lina | Zhou, Lingling | Zhao, Zhiling
Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water.
اظهر المزيد [+] اقل [-]Identification of (anti-)androgenic activities and risks of sludges from industrial and domestic wastewater treatment plants
2021
Hu, Xinxin | Shi, Wei | Wei, Si | Zhang, Xiaowei | Yu, Hongxia
The annual production of sludges is significant all over the world, and large amounts of sludges have been improperly disposed by random dumping. The contaminants in these sludges may leak into the surrounding soils, surface and groundwater, or be blown into the atmosphere, thereby causing adverse effects to human health. In this study, the (anti-)androgenic activities in organic extracts of sludges produced from both industrial and domestic wastewater treatment plants (WWTPs) were examined using reporter gene assay based on MDA-kb2 cell lines and the potential (anti-)androgenic risks were assessed using hazard index (HI) based on bioassays. Twelve of the 18 samples exhibited androgen receptor (AR) antagonistic activities, with AR antagonistic equivalents ranging from 1.2 × 10² μg flutamide/g sludge to 1.8 × 10⁴ μg flutamide/g sludge; however, no AR agonistic activity was detected in any of the tested samples. These 12 sludges were all from chemical WWTPs; no sludges from domestic WWTPs displayed AR antagonistic activity. Aside from wastewater source, treatment scale and technology could also influence AR antagonistic potencies. The HI values of all the 12 sludges exceeded 1.0, and the highest HI value was above 3.0 × 10³ for children; this indicates that these sludges might cause adverse effects to human health and that children are at a greater risk than adults. The anti-androgenic potencies and risks of the subdivided fractions were also determined, and medium-polar and polar fractions were found to have relatively high detection rates and contribution rates to the AR antagonistic potencies and risks of the raw sample extracts.
اظهر المزيد [+] اقل [-]Deposition, depletion, and potential bioaccumulation of bisphenol F in eggs of laying hens after consumption of contaminated feed
2021
Xiao, Zhiming | Wang, Ruiguo | Suo, Decheng | Wang, Shi | Li, Xiaomin | Dong, Shujun | Li, Tong | Su, Xiaoou
Increasing concerns over bisphenol A (BPA) as an endocrine disrupting chemical (EDC) and its adverse effects on both humans and animals have led to the substitution by structural analogs, such as bisphenol F (BPF), in many application areas. Information regarding to the carry-over of this emerging chemical in farm animals is essential for legislation and risk assessment purposes. In this study, a large-scale number of animal experiments were designed to investigate the transfer of BPF from feed to eggs. One control and three experimental groups of laying hens (72 hens per group) were fed with basal diets and BPF-contaminated feed at concentration levels of 0.1, 0.5 and 2.5 mg kg⁻¹, respectively, for two weeks. The hens were then fed with BPF-free diets for a further four weeks. Eggs were collected daily, and separated into egg yolk and white for BPF analysis. The effects of different levels of BPF exposure on laying performance followed a non-monotonic dose-response curve, since low level BPF (0.1 mg kg⁻¹) exposure did increase the laying rate, mean egg weight and daily feed intake, while high level BPF (2.5 mg kg⁻¹) exposure showed a decreasing trend. BPF residues were detected in both egg yolks and whole eggs after two days of administration, and plateau phase was achieved within 9–18 days. There are clear linear dose-response relationships between the plateau BPF concentrations in feed and eggs. The residue of BPF was found mainly in egg yolks with conjugated form and depleted slowly (still detected 21 days after feeding the BPF-free diet of the high level group). Mean carry-over rate of 0.59% BPF from feed to eggs was obtained. Compared with the carry-over rates of PCBs and dioxins, BPF showed a relatively minor trend of bioaccumulation in eggs. To the best of our knowledge, this is the first report on the deposition, depletion, and bioaccumulation study of bisphenols in farm animals. The quantity of data can therefore be helpful in the frame of risk assessment, especially for a comprehensive estimation of consumer exposure to the residues of bisphenols.
اظهر المزيد [+] اقل [-]Identification of mcr-10 carried by self-transmissible plasmids and chromosome in Enterobacter roggenkampii strains isolated from hospital sewage water
2021
Xu, Tingting | Zhang, Chuqiu | Ji, Yang | Song, Jingjie | Liu, Yang | Guo, Yuqi | Zhou, Kai
The recent emergence of plasmid-borne mobilized colistin resistance (mcr) genes largely challenges the clinical use of colistin. Monitoring the distribution of mcr genes in environment is important for aiding to develop effective control measures. In this study, we aimed to evaluate the occurrence of a recent reported mcr variant, mcr-10, in hospital sewage water. mcr-10 was identified in three Enterobacter roggenkampii strains with high-level colistin resistance (MIC ≥ 16 mg/L). The three strains were assigned to different sequence types suggesting a sporadic dissemination of mcr-10 in the sewage water. Pairwise comparisons of the predicted protein structures of ten mcr homologues revealed that MCR-10 shares a higher similarity with MCR-3, MCR-4, MCR-7, and MCR-9. Overexpression in Escherichia coli Top10 showed that the activity of mcr-10 against colistin is lower than that of mcr-9. mcr-10 expression can be specifically induced by colistin, and it was co-upregulated with phoPQ to mediate the high-level colistin resistance. The mcr-10 gene was detected on self-transmissible plasmids in two isolates and on the chromosome in the other one. Blasting in Genbank suggested that the two mcr-10-bearing plasmids (pECL981-1 and pECL983-1) were novel plasmids, and replicon typing showed that they belong to IncFIB-FII and IncFIB, respectively. Plasmid-curing assay evidence that pECL981-1 was lack of fitness cost for the host. Three novel types of the genetic context were found for the mcr-10 gene in the three isolates. The structure xerC-mcr10 was dominant in mcr-10-positive genomes (39/42) retrieved in Genbank, suggesting that xerC might be involved in the mobilization of mcr-10. To our knowledge, this is the first report of mcr-10-producing E. roggenkampii detected in hospital sewage water. Our study highlights that continuous monitoring of mcr genes in hospital sewage water is imperative for understanding and tackling the dissemination.
اظهر المزيد [+] اقل [-]Intensive vegetable production results in high nitrate accumulation in deep soil profiles in China
2021
Bai, Xinlu | Jiang, Yun | Miao, Hongzhi | Xue, Shaoqi | Chen, Zhujun | Zhou, Jianbin
A comprehensive understanding of the patterns and controlling factors of nitrate accumulation in intensive vegetable production is essential to solve this problem. For the first time, the national patterns and controlling factors of nitrate accumulation in soil of vegetable systems in China were analysed by compiling 1262 observations from 117 published articles. The results revealed that the nitrate accumulation at 0–100 cm, 100–200 cm, 200–300 cm, and >300 cm were 504, 390, 349, and 244 kg N ha⁻¹, with accumulation rates of 62, 54, 19, and 16 kg N ha⁻¹ yr⁻¹ for plastic greenhouse vegetables (PG); for open field vegetables (OF), they were 264, 217, 228, and 242 kg N ha⁻¹ with accumulation rates of 26, 24, 18, and 10 kg N ha⁻¹ yr⁻¹, respectively. Nitrate accumulation at 0–100 cm, 0–200 cm, and 0–400 cm accounted for 5%, 11%, and 17% of accumulated nitrogen (N) inputs for PG, and represented 4%, 9%, and 13% of accumulated N inputs for OF. Nitrogen input rates and soil pH had positive effects and soil organic carbon, water input rate, and carbon to nitrogen ratio (C/N) had negative effects on nitrate accumulation in root zone (0–100 cm soil). Nitrate accumulation in deep vadose zone (>100 cm soil) was positively correlated with N and water input rates, and was negatively correlated with soil organic carbon, C/N, and the clay content. Thus, for a given vegetable soil with relatively stable soil pH and soil clay content, reducing N and water inputs, and increasing soil organic carbon and C/N are effective measures to control nitrate accumulation.
اظهر المزيد [+] اقل [-]