Challenging genosensors in food samples: The case of gluten determination in highly processed samples
2016
Martín-Fernández, Begoña | de-los-Santos-Álvarez, Noemí | Martín-Clemente, Juan Pedro | Lobo-Castañón, María Jesús | López Ruiz, Beatriz
Electrochemical genosensors have undergone an enormous development in the last decades, but only very few have achieved a quantification of target content in highly processed food samples. The detection of allergens, and particularly gluten, is challenging because legislation establishes a threshold of 20ppm for labeling as gluten-free but most genosensors expresses the results in DNA concentration or DNA copies. This paper describes the first attempt to correlate the genosensor response and the wheat content in real samples, even in the case of highly processed food samples. A sandwich-based format, comprising a capture probe immobilized onto the screen-printed gold electrode, and a signaling probe functionalized with fluorescein isothiocyanate (FITC), both hybridizing with the target was used. The hybridization event was electrochemically monitored by adding an anti-FITC peroxidase (antiFITC-HRP) and its substrate, tetramethylbenzidine. Binary model mixtures, as a reference material, and real samples have been analyzed. DNA from food was extracted and a fragment encoding the immunodominant peptide of α2-gliadin amplified by a tailored PCR. The sensor was able to selectively detect toxic cereals for celiac patients, such as different varieties of wheat, barley, rye and oats, from non-toxic plants. As low as 0.001% (10mg/kg) of wheat flour in an inert matrix was reliably detected, which directly compete with the current method of choice for DNA detection, the real-time PCR. A good correlation with the official immunoassay was found in highly processed food samples.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library