To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies
2014
Vaumourin E. | Vourc'h G. | Telfer S. | Lambin X. | Salih D. | Seitzer U. | Morand S. | Charbonnel N. | Vayssier-Taussat M. | Gasqui P.
AGROVOC Keywords
Bibliographic information
Frontiers in Cellular and Infection Microbiology
Volume
4
Issue
62
Pagination
11 p.
Other Subjects
Theileria velifera
Type
Journal Article; Journal Part
Source
Vaumourin E., Vourc'h G., Telfer S., Lambin X., Salih D., Seitzer U., Morand S., Charbonnel N., Vayssier-Taussat M., Gasqui P. 2014. To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies. Frontiers in Cellular and Infection Microbiology, 4 (62) : 11 p. http://dx.doi.org/10.3389/fcimb.2014.00062
2017-07-15
AGRIS AP
Data Provider
This bibliographic record has been provided by Centre de coopération internationale en recherche agronomique pour le développement
If you notice any incorrect information relating to this record, please contact us at [email protected]