FAO AGRIS - Système international des sciences et technologies agricoles

To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies

Vaumourin E. | Vourc'h G. | Telfer S. | Lambin X. | Salih D. | Seitzer U. | Morand S. | Charbonnel N. | Vayssier-Taussat M. | Gasqui P.


Informations bibliographiques
Frontiers in Cellular and Infection Microbiology
Volume 4 Numéro 62
Pagination
11 p.
D'autres materias
Theileria velifera
Type
Journal Article; Journal Part
Source
Vaumourin E., Vourc'h G., Telfer S., Lambin X., Salih D., Seitzer U., Morand S., Charbonnel N., Vayssier-Taussat M., Gasqui P. 2014. To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies. Frontiers in Cellular and Infection Microbiology, 4 (62) : 11 p. http://dx.doi.org/10.3389/fcimb.2014.00062

2017-07-15
AGRIS AP
Consulter Google Scholar
Si vous remarquez des informations incorrectes dans cette référence bibliographique, veuillez nous contacter à l'adresse [email protected]