FAO AGRIS - International System for Agricultural Science and Technology

Comparing the performance of multispectral vegetation indices and machine-learning algorithms for remote estimation of chlorophyll content: a case study in the Sundarbans mangrove forest

2015

Gholizadeh, Hamed | Robeson, Scott M. | Rahman, Abdullah F.


Bibliographic information
International journal of remote sensing
Volume 36 Issue 12 Pagination 3114 - 3133 ISSN 1366-5901
Publisher
Taylor & Francis
Language
English
Type
Journal Article; Text

2024-02-28
MODS
Data Provider
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]