AGRIS - International System for Agricultural Science and Technology

Formulating Convolutional Neural Network for mapping total aquifer vulnerability to pollution

2022

Nadiri, Ata Allah | Moazamnia, Marjan | Sadeghfam, Sina | Gnanachandrasamy, Gopalakrishnan | Venkatramanan, Senapathi


Bibliographic information
Environmental pollution
Volume 304 Pagination 119208 ISSN 0269-7491
Publisher
Elsevier Ltd
Other Subjects
Urmia aquifer; Non-point source pollution; Unconfined aquifer; Specific vulnerability; Intrinsic vulnerability
Language
English
Type
Text; Journal Article

2024-02-28
MODS
Data Provider
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org