Refine search
Results 21-30 of 146
The powerful function of Saccharomyces cerevisiae in food science and other fields: a critical review Full text
2024
Zhiluo Que | Shengnan Wang | Mengyuan Wei | Yulin Fang | Tingting Ma | Xiaoyu Wang | Xiangyu Sun
The powerful function of Saccharomyces cerevisiae in food science and other fields: a critical review Full text
2024
Zhiluo Que | Shengnan Wang | Mengyuan Wei | Yulin Fang | Tingting Ma | Xiaoyu Wang | Xiangyu Sun
Saccharomyces cerevisiae is the earliest domesticated fungus, researched deeply and widely used fungus. When used in food fermentation, Saccharomyces cerevisiae has an important influence on the quality, flavor, and aroma of products. Future developments will focus on enhancing flavor diversity, increasing production efficiency, sustainability, and product consistency, as well as improving the fermentation characteristics by using advanced technologies. Saccharomyces cerevisiae is an ideal substrate for synthetic biology research, usually used in the production of lactic acid, terpenes, steroids, vaccines, etc., which helps to reduce production cost, shorten the production cycle, improve production capacity, and has a very broad application prospect. In addition, in the field of environmental protection, biofuel ethanol is one of the promising and popular fuels with potential for energy and environmental security. However, there are major challenges for Saccharomyces cerevisiae that use lignocellulosic biomass as feedstock to produce biofuel ethanol.
Show more [+] Less [-]The powerful function of Saccharomyces cerevisiae in food science and other fields: a critical review Full text
2024
Zhiluo Que | Shengnan Wang | Mengyuan Wei | Yulin Fang | Tingting Ma | Xiaoyu Wang | Xiangyu Sun
Saccharomyces cerevisiae is the earliest domesticated fungus, researched deeply and widely used fungus. When used in food fermentation, Saccharomyces cerevisiae has an important influence on the quality, flavor, and aroma of products. Future developments will focus on enhancing flavor diversity, increasing production efficiency, sustainability, and product consistency, as well as improving the fermentation characteristics by using advanced technologies. Saccharomyces cerevisiae is an ideal substrate for synthetic biology research, usually used in the production of lactic acid, terpenes, steroids, vaccines, etc., which helps to reduce production cost, shorten the production cycle, improve production capacity, and has a very broad application prospect. In addition, in the field of environmental protection, biofuel ethanol is one of the promising and popular fuels with potential for energy and environmental security. However, there are major challenges for Saccharomyces cerevisiae that use lignocellulosic biomass as feedstock to produce biofuel ethanol.
Show more [+] Less [-]Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species Full text
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species Full text
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Microalgae are increasingly regarded as a sustainable source of novel food and functional products due to their nutritional composition. This study aimed to conduct an in-depth analysis of the chemical, microstructural and rheological, and volatile-flavour related properties of Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species. Chemometric data analysis was employed to integrate the multivariate data, investigate the classification among the four species, and identify discriminating and distinct features. Arthrospira is high in protein content, and Nannochloropsis is lipid-rich with dominantly polyunsaturated fatty acids. Isochrysis is rich in carotenoids and total phenolics, while Tetraselmis is high in carbohydrates. Key discriminant volatile markers encompass aldehydes, terpenes, and hydrocarbons for Arthrospira; ketones and alcohols for Nannochloropsis; aldehydes, ketones, and sulfur-containing compounds for Tetraselmis; and furans and aldehydes for Isochrysis. Moreover, Arthrospira and Isochrysis demonstrate elevated viscosity and notable thickening potential. In summary, the different microalgal biomass studied in this study showcase unique compositional, rheological, and volatile properties, highlighting their potential as functional ingredients for diverse applications in the food and pharmaceutical industries.
Show more [+] Less [-]Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species Full text
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Microalgae are increasingly regarded as a sustainable source of novel food and functional products due to their nutritional composition. This study aimed to conduct an in-depth analysis of the chemical, microstructural and rheological, and volatile-flavour related properties of Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species. Chemometric data analysis was employed to integrate the multivariate data, investigate the classification among the four species, and identify discriminating and distinct features. Arthrospira is high in protein content, and Nannochloropsis is lipid-rich with dominantly polyunsaturated fatty acids. Isochrysis is rich in carotenoids and total phenolics, while Tetraselmis is high in carbohydrates. Key discriminant volatile markers encompass aldehydes, terpenes, and hydrocarbons for Arthrospira; ketones and alcohols for Nannochloropsis; aldehydes, ketones, and sulfur-containing compounds for Tetraselmis; and furans and aldehydes for Isochrysis. Moreover, Arthrospira and Isochrysis demonstrate elevated viscosity and notable thickening potential. In summary, the different microalgal biomass studied in this study showcase unique compositional, rheological, and volatile properties, highlighting their potential as functional ingredients for diverse applications in the food and pharmaceutical industries.
Show more [+] Less [-]Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization Full text
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization Full text
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
The impact of microwave-assisted thermal sterilization (MATS) on three natural pigments and their storage stability in vegetable purees was investigated. We selected carrot puree for beta carotene, red cabbage puree for anthocyanins, and red beetroot puree for betalains. The purees were packaged in multilayer flexible pouches of AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//ONy (15 μm)//CPP (70 μm), then processed with the MATS system to Fo = 6 to 11 min. After MATS treatment, the pouches were stored for 6 months at a storage temperature of 37.8 °C. The MATS treatment had a significant impact (p < 0.05) on the instrumental colors of three purees, with the total color difference (ΔE) ranging between 6.0 and 10.5. Similarly, the concentration of betalains experienced degradation by 20%−29% after the MATS treatment, while beta-carotene concentration showed a high retention. In addition, the pH of the purees declined considerably (p < 0.05) after the MATS treatment. Over the 6 months of storage at 37.8 °C, the PET-metal oxide pouches maintained the moisture content in all the purees, as the weight loss was only 0.43%−0.45%. The pigments in the MATS-processed purees had different levels of stability; ΔE values varied between 4.23 and 12.3. Beta-carotene was the most stable pigment, followed by betalains and anthocyanins. The degradation of both betalains and anthocyanins during storage was explained by first and fractional conversion models. MATS processing and packages with high gas barriers can therefore be used to preserve selected vegetable purees rich in natural pigments.
Show more [+] Less [-]Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization Full text
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
The impact of microwave-assisted thermal sterilization (MATS) on three natural pigments and their storage stability in vegetable purees was investigated. We selected carrot puree for beta carotene, red cabbage puree for anthocyanins, and red beetroot puree for betalains. The purees were packaged in multilayer flexible pouches of AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//ONy (15 μm)//CPP (70 μm), then processed with the MATS system to Fo = 6 to 11 min. After MATS treatment, the pouches were stored for 6 months at a storage temperature of 37.8 °C. The MATS treatment had a significant impact (p < 0.05) on the instrumental colors of three purees, with the total color difference (ΔE) ranging between 6.0 and 10.5. Similarly, the concentration of betalains experienced degradation by 20%−29% after the MATS treatment, while beta-carotene concentration showed a high retention. In addition, the pH of the purees declined considerably (p < 0.05) after the MATS treatment. Over the 6 months of storage at 37.8 °C, the PET-metal oxide pouches maintained the moisture content in all the purees, as the weight loss was only 0.43%−0.45%. The pigments in the MATS-processed purees had different levels of stability; ΔE values varied between 4.23 and 12.3. Beta-carotene was the most stable pigment, followed by betalains and anthocyanins. The degradation of both betalains and anthocyanins during storage was explained by first and fractional conversion models. MATS processing and packages with high gas barriers can therefore be used to preserve selected vegetable purees rich in natural pigments.
Show more [+] Less [-]Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway Full text
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway Full text
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
The colonic mucosal barrier is an important component of the intestinal barrier, and its integrity is crucial for maintaining digestive tract homeostasis and normal metabolism in the body. This study aimed to elucidate the mechanisms by which malvidin-3-O-galactoside (M3G) might ameliorate colonic mucosal barrier function, from the perspective of physical barrier function and immune barrier function. Male C57BL/6J mice were given dextran sulfate sodium (DSS) to establish a mice model for colitis and then administrated with or without M3G for one week. The results showed that M3G supplementation significantly improved the disease activity index (DAI) score and colon tissue injury in mice with DSS-induced colitis. M3G improved the colonic physical barrier function by modulating the expression of mucin2 (MUC2), claudin-1, occludin, zona occludens 1 (ZO-1), and intestinal fatty acid binding protein (iFABP) in the colonic mucosa. Additionally, M3G also relieved the colonic immune barrier of mice by increasing the level of secretory immunoglobulin A (SIgA) in colon tissue and the percentages of CD4+T (CD3+CD4+) and CD8+T (CD3+CD8+) cells in colon lamina propria monocytes in mice. Furthermore, M3G down-regulated Notch signaling pathway-related proteins such as Notch1, notch intracellular domain (NICD), delta-like ligand 4 (DLL4), delta-like ligand 1 (DLL1), and hairy/enhancer of split 1 (Hes1) of colon tissue. The present results demonstrated that M3G can improve colonic mucosal barrier function by inhibiting the Notch signaling pathway.
Show more [+] Less [-]Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway Full text
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
The colonic mucosal barrier is an important component of the intestinal barrier, and its integrity is crucial for maintaining digestive tract homeostasis and normal metabolism in the body. This study aimed to elucidate the mechanisms by which malvidin-3-O-galactoside (M3G) might ameliorate colonic mucosal barrier function, from the perspective of physical barrier function and immune barrier function. Male C57BL/6J mice were given dextran sulfate sodium (DSS) to establish a mice model for colitis and then administrated with or without M3G for one week. The results showed that M3G supplementation significantly improved the disease activity index (DAI) score and colon tissue injury in mice with DSS-induced colitis. M3G improved the colonic physical barrier function by modulating the expression of mucin2 (MUC2), claudin-1, occludin, zona occludens 1 (ZO-1), and intestinal fatty acid binding protein (iFABP) in the colonic mucosa. Additionally, M3G also relieved the colonic immune barrier of mice by increasing the level of secretory immunoglobulin A (SIgA) in colon tissue and the percentages of CD4+T (CD3+CD4+) and CD8+T (CD3+CD8+) cells in colon lamina propria monocytes in mice. Furthermore, M3G down-regulated Notch signaling pathway-related proteins such as Notch1, notch intracellular domain (NICD), delta-like ligand 4 (DLL4), delta-like ligand 1 (DLL1), and hairy/enhancer of split 1 (Hes1) of colon tissue. The present results demonstrated that M3G can improve colonic mucosal barrier function by inhibiting the Notch signaling pathway.
Show more [+] Less [-]Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices Full text
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices Full text
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Essential oils (EOs) are plant aromas used in the food industry. They have attracted considerable attention due to their diverse properties, i.e., antimicrobial, antifungal, and antioxidant activities, with natural aroma and flavor as beneficial food additives. However, the instability, degradability, and hydrophobicity of EOs have limited their practical use in the food industry. Nanoencapsulation, a process where EOs are enclosed in a protective shell at the nanoscale, promises to enhance the biological properties of EOs. This process empowers EOs with excellent physiochemical stability and solubility, allowing for better distribution in food systems and controlled release for prolonged availability of EOs without rapid evaporation and instability. This review summarizes the recent works on encapsulating EOs to enhance their biological properties, providing a comprehensive overview of various specific nano-carriers and their applications in the food industry.
Show more [+] Less [-]Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices Full text
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Essential oils (EOs) are plant aromas used in the food industry. They have attracted considerable attention due to their diverse properties, i.e., antimicrobial, antifungal, and antioxidant activities, with natural aroma and flavor as beneficial food additives. However, the instability, degradability, and hydrophobicity of EOs have limited their practical use in the food industry. Nanoencapsulation, a process where EOs are enclosed in a protective shell at the nanoscale, promises to enhance the biological properties of EOs. This process empowers EOs with excellent physiochemical stability and solubility, allowing for better distribution in food systems and controlled release for prolonged availability of EOs without rapid evaporation and instability. This review summarizes the recent works on encapsulating EOs to enhance their biological properties, providing a comprehensive overview of various specific nano-carriers and their applications in the food industry.
Show more [+] Less [-]Quantitative analysis of curcumin compounds in ginger by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry Full text
2024
Yixuan Jiang | Xiuhua Liu | Yinfeng Zhao | Jiguang Zhang | Jing Qiu | Yongzhong Qian | Rui Weng
Quantitative analysis of curcumin compounds in ginger by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry Full text
2024
Yixuan Jiang | Xiuhua Liu | Yinfeng Zhao | Jiguang Zhang | Jing Qiu | Yongzhong Qian | Rui Weng
Curcumin compounds are important bioactive compounds in ginger, yet their analysis is limited by their low concentrations. In the current research, a highly sensitive and reliable approach for simultaneous quantitative detection of three curcumin compounds in ginger samples was established using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The extraction solvent, volume of extraction solvent, sonication time, and oscillation time were optimized by a single factor experiment. The method validation results showed that the regression coefficients were higher than 0.9990, and the linearity was satisfactory. Matrix effects were negligible with the values of 94.6%–98.8%. The recovery at three spiking levels was between 81.7% and 100.0%, and the precision was less than 5.4%. The approach could be used to determine the curcumin components in ginger samples since the results demonstrate that it is easy to use, practicable, repeatable, and accurate.
Show more [+] Less [-]Quantitative analysis of curcumin compounds in ginger by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry Full text
2024
Yixuan Jiang | Xiuhua Liu | Yinfeng Zhao | Jiguang Zhang | Jing Qiu | Yongzhong Qian | Rui Weng
Curcumin compounds are important bioactive compounds in ginger, yet their analysis is limited by their low concentrations. In the current research, a highly sensitive and reliable approach for simultaneous quantitative detection of three curcumin compounds in ginger samples was established using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The extraction solvent, volume of extraction solvent, sonication time, and oscillation time were optimized by a single factor experiment. The method validation results showed that the regression coefficients were higher than 0.9990, and the linearity was satisfactory. Matrix effects were negligible with the values of 94.6%–98.8%. The recovery at three spiking levels was between 81.7% and 100.0%, and the precision was less than 5.4%. The approach could be used to determine the curcumin components in ginger samples since the results demonstrate that it is easy to use, practicable, repeatable, and accurate.
Show more [+] Less [-]Chemical profiles, dissolution patterns, and in vitro bioactivities of selenium-enriched green teas: impact of brewing conditions Full text
2024
Yang Wei | Di Zhang | Yi Liang | Jiachen Shi | Kang Wei | Lanlan Peng | Haofeng Gu | Peihua Ma | Qian Wang | Zhanwang Zhu | Xinlin Wei | Yuanfeng Wang
Chemical profiles, dissolution patterns, and in vitro bioactivities of selenium-enriched green teas: impact of brewing conditions Full text
2024
Yang Wei | Di Zhang | Yi Liang | Jiachen Shi | Kang Wei | Lanlan Peng | Haofeng Gu | Peihua Ma | Qian Wang | Zhanwang Zhu | Xinlin Wei | Yuanfeng Wang
The dissolution patterns of different teas determine the sensory quality and health attributes of the tea infusion. In this study, the chemical profiles of two typical selenium-enriched green teas, Xiazhou Bifeng (Se-BF), Enshi Yulu (Se-YL), and their corresponding regular green teas (BF and YL) were determined. Under the application of selenium fertilizer, the contents of caffeine, polyphenols, and gallic acid decreased, while the contents of theaflavins, theabrownins, and chlorophylls increased. The selenium content in BF and YL is 0.05−0.16 mg/kg and 0.33−0.43 mg/kg respectively, while after the application of exogenous selenium, the selenium content in Se-BF and Se-YL reached 1.28 to 2.17 mg/kg and 0.37−2.23 mg/kg respectively. The dissolution patterns of Se-BF and Se-YL were investigated under different brewing conditions (temperature and duration), and the main components of Se-YL were more easily dissolved out than Se-BF, which might be attributed to the steaming process of Se-YL. Based on the sensory evaluation of tea infusion, 100 °C and 5 min were the optimal brewing conditions. Based on a daily tea consumption model, the increased brewing time reduced the content of dissolved components in tea infusions, along with the decreased in vitro antioxidant and hypoglycemic activities. Collectively, Se-YL demonstrated superior sensory and nutritional attributes compared to Se-BF. This study explored the influence of brewing conditions on the dissolution patterns and in vitro bioactivities of selenium-enriched green teas, providing guidance for scientific tea brewing and consumption.
Show more [+] Less [-]Chemical profiles, dissolution patterns, and in vitro bioactivities of selenium-enriched green teas: impact of brewing conditions Full text
2024
Yang Wei | Di Zhang | Yi Liang | Jiachen Shi | Kang Wei | Lanlan Peng | Haofeng Gu | Peihua Ma | Qian Wang | Zhanwang Zhu | Xinlin Wei | Yuanfeng Wang
The dissolution patterns of different teas determine the sensory quality and health attributes of the tea infusion. In this study, the chemical profiles of two typical selenium-enriched green teas, Xiazhou Bifeng (Se-BF), Enshi Yulu (Se-YL), and their corresponding regular green teas (BF and YL) were determined. Under the application of selenium fertilizer, the contents of caffeine, polyphenols, and gallic acid decreased, while the contents of theaflavins, theabrownins, and chlorophylls increased. The selenium content in BF and YL is 0.05−0.16 mg/kg and 0.33−0.43 mg/kg respectively, while after the application of exogenous selenium, the selenium content in Se-BF and Se-YL reached 1.28 to 2.17 mg/kg and 0.37−2.23 mg/kg respectively. The dissolution patterns of Se-BF and Se-YL were investigated under different brewing conditions (temperature and duration), and the main components of Se-YL were more easily dissolved out than Se-BF, which might be attributed to the steaming process of Se-YL. Based on the sensory evaluation of tea infusion, 100 °C and 5 min were the optimal brewing conditions. Based on a daily tea consumption model, the increased brewing time reduced the content of dissolved components in tea infusions, along with the decreased in vitro antioxidant and hypoglycemic activities. Collectively, Se-YL demonstrated superior sensory and nutritional attributes compared to Se-BF. This study explored the influence of brewing conditions on the dissolution patterns and in vitro bioactivities of selenium-enriched green teas, providing guidance for scientific tea brewing and consumption.
Show more [+] Less [-]Changes in the physicochemical and volatile profiles during the winemaking of Marselan in the Eastern Foot of Helan Mountain, China Full text
2024
Lei Fang | Ningli Qi | Yajun Li | Tinghui Chen | Xiao Gong
Changes in the physicochemical and volatile profiles during the winemaking of Marselan in the Eastern Foot of Helan Mountain, China Full text
2024
Lei Fang | Ningli Qi | Yajun Li | Tinghui Chen | Xiao Gong
Marselan wine, one of the most important wines in the Ningxia Hui Autonomous Region of China, has attracted much attention due to its unique quality. This study focused on determining and analyzing the changes in volatile flavor compounds and antioxidant activity during different stages of Marselan winemaking. A total of 40 volatile aroma compounds were identified by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Among these compounds, ethyl hexanoate, isoamyl acetate, ethyl formate, ethyl acetate, ethyl butanoate, ethyl octanoate, 3-methyl-1-butanol, ethanol, and 2-methyl-1-propanol showed significant increases after fermentation. Flavonoid and phenol contents in Marselan wine samples also significantly increased after fermentation, demonstrating high antioxidant capacity. Principal component analysis (PCA) successfully distinguished the fruit juice processing stage, alcohol fermentation stage, and malolactic fermentation stage, while the malolactic fermentation stage and wine stable stage could not be distinguished, This indicates that the formation of aroma profiles primarily occurs during the malolactic fermentation stage. The study successfully established flavor fingerprints of samples from different stages of Marselan wine production based on the detected volatile compounds.
Show more [+] Less [-]Changes in the physicochemical and volatile profiles during the winemaking of Marselan in the Eastern Foot of Helan Mountain, China Full text
2024
Lei Fang | Ningli Qi | Yajun Li | Tinghui Chen | Xiao Gong
Marselan wine, one of the most important wines in the Ningxia Hui Autonomous Region of China, has attracted much attention due to its unique quality. This study focused on determining and analyzing the changes in volatile flavor compounds and antioxidant activity during different stages of Marselan winemaking. A total of 40 volatile aroma compounds were identified by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Among these compounds, ethyl hexanoate, isoamyl acetate, ethyl formate, ethyl acetate, ethyl butanoate, ethyl octanoate, 3-methyl-1-butanol, ethanol, and 2-methyl-1-propanol showed significant increases after fermentation. Flavonoid and phenol contents in Marselan wine samples also significantly increased after fermentation, demonstrating high antioxidant capacity. Principal component analysis (PCA) successfully distinguished the fruit juice processing stage, alcohol fermentation stage, and malolactic fermentation stage, while the malolactic fermentation stage and wine stable stage could not be distinguished, This indicates that the formation of aroma profiles primarily occurs during the malolactic fermentation stage. The study successfully established flavor fingerprints of samples from different stages of Marselan wine production based on the detected volatile compounds.
Show more [+] Less [-]Microbial enzymes: the bridge between Daqu flavor and microbial communities Full text
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Microbial enzymes: the bridge between Daqu flavor and microbial communities Full text
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Baijiu Daqu, a traditional component in the Baijiu brewing process, serves as both a 'saccharifying fermenting agent' and an 'aroma-producing catalyst', embodying a rich historical legacy. Daqu offers a diverse microorganism environment that is crucial for the fermentation of Baijiu. The distinctive flavor profile, a key attribute of Baijiu, is intricately linked to the microflora present in Daqu. To date, research on Daqu has primarily concentrated on the diversity of microbial communities, microbial interactions, flavor characteristics, and biochemical properties. The functional enzyme system in Daqu serves as a crucial link connecting the flavor of Baijiu with the microbial community of Daqu. However, reviews that particularly focus on the role of enzymes in determining the quality of Daqu have not yet been reported. Thus, here the types and production processes of Daqu are initially summarized. Then, the pathways involved in the production of the major flavor substances in Daqu are elucidated, as well as the role and contribution of different functional enzymes in the formation of Daqu flavor. Finally, the current technologies for improving Daqu flavor through microbial inoculation aree discussed, including the advantages, shortcomings, and bottlenecks of microbial inoculation. The findings gained in this study provide valuable information for the efficient production of high-quality Daqu for the brewing of Baijiu.
Show more [+] Less [-]Microbial enzymes: the bridge between Daqu flavor and microbial communities Full text
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Baijiu Daqu, a traditional component in the Baijiu brewing process, serves as both a 'saccharifying fermenting agent' and an 'aroma-producing catalyst', embodying a rich historical legacy. Daqu offers a diverse microorganism environment that is crucial for the fermentation of Baijiu. The distinctive flavor profile, a key attribute of Baijiu, is intricately linked to the microflora present in Daqu. To date, research on Daqu has primarily concentrated on the diversity of microbial communities, microbial interactions, flavor characteristics, and biochemical properties. The functional enzyme system in Daqu serves as a crucial link connecting the flavor of Baijiu with the microbial community of Daqu. However, reviews that particularly focus on the role of enzymes in determining the quality of Daqu have not yet been reported. Thus, here the types and production processes of Daqu are initially summarized. Then, the pathways involved in the production of the major flavor substances in Daqu are elucidated, as well as the role and contribution of different functional enzymes in the formation of Daqu flavor. Finally, the current technologies for improving Daqu flavor through microbial inoculation aree discussed, including the advantages, shortcomings, and bottlenecks of microbial inoculation. The findings gained in this study provide valuable information for the efficient production of high-quality Daqu for the brewing of Baijiu.
Show more [+] Less [-]pH/glucose dual-responsive protein-based hydrogels with enhanced adhesive and antibacterial properties for diabetic wound healing Full text
2024
Shuhua Yin | Maoping Duan | Matthias Fellner | Zhongjiang Wang | Chenyan Lv | Jiachen Zang | Guanghua Zhao | Tuo Zhang
pH/glucose dual-responsive protein-based hydrogels with enhanced adhesive and antibacterial properties for diabetic wound healing Full text
2024
Shuhua Yin | Maoping Duan | Matthias Fellner | Zhongjiang Wang | Chenyan Lv | Jiachen Zang | Guanghua Zhao | Tuo Zhang
Designing a wound dressing that offers excellent antibacterial properties while providing dual pH/glucose responsiveness for diabetic wound healing remains a considerable challenge. Herein, a 3D cross-linked native protein hydrogel was constructed through a Schiff base reaction based on -NH2 in paramyosin (PM) and -CHO in oxidized dextran (ODA) under mild conditions. Within the hydrogel, both amikacin and glucose oxidase were encapsulated during gelation. The resulting hydrogel exhibited favorable rheological properties, featuring self-healing, antibacterial activity, tissue adhesiveness, and excellent biocompatibility. Notably, the hydrogel demonstrated excellent pH/glucose dual-responsive properties. In infected wounds, the Schiff base bonds dissociated due to low pH, while in uninfected wounds with high blood glucose levels, the encapsulated glucose oxidase was functional, which also lowered the local pH level and dissociated the Schiff base bonds. Furthermore, the hydrogel quickly achieved pH/glucose dual responsiveness, leading to increased amikacin release to reduce bacterial invasion, alleviate oxidative stress, promote re-epithelialization and collagen deposition, and eventually accelerate diabetic wound healing. Collectively, the constructed hydrogel offers brand-new viewpoints on glucose-responsive biomaterials for diabetic wound therapy.
Show more [+] Less [-]pH/glucose dual-responsive protein-based hydrogels with enhanced adhesive and antibacterial properties for diabetic wound healing Full text
2024
Shuhua Yin | Maoping Duan | Matthias Fellner | Zhongjiang Wang | Chenyan Lv | Jiachen Zang | Guanghua Zhao | Tuo Zhang
Designing a wound dressing that offers excellent antibacterial properties while providing dual pH/glucose responsiveness for diabetic wound healing remains a considerable challenge. Herein, a 3D cross-linked native protein hydrogel was constructed through a Schiff base reaction based on -NH2 in paramyosin (PM) and -CHO in oxidized dextran (ODA) under mild conditions. Within the hydrogel, both amikacin and glucose oxidase were encapsulated during gelation. The resulting hydrogel exhibited favorable rheological properties, featuring self-healing, antibacterial activity, tissue adhesiveness, and excellent biocompatibility. Notably, the hydrogel demonstrated excellent pH/glucose dual-responsive properties. In infected wounds, the Schiff base bonds dissociated due to low pH, while in uninfected wounds with high blood glucose levels, the encapsulated glucose oxidase was functional, which also lowered the local pH level and dissociated the Schiff base bonds. Furthermore, the hydrogel quickly achieved pH/glucose dual responsiveness, leading to increased amikacin release to reduce bacterial invasion, alleviate oxidative stress, promote re-epithelialization and collagen deposition, and eventually accelerate diabetic wound healing. Collectively, the constructed hydrogel offers brand-new viewpoints on glucose-responsive biomaterials for diabetic wound therapy.
Show more [+] Less [-]