Refine search
Results 1-10 of 248
The effects of removing cloudwater and lowering ambient O3 on red spruce grown at high elevations in the southern Appalachians.
1993
Thornton F.C. | McDuffie C. Jr. | Pier P.A. | Wilkinson R.C.
Acidic precipitation in western North America: trends, sources and altitude effects in New Mexico 1979-1985.
1986
Popp C.J. | Brandvold D.K. | Long A. | Warneke L.
Modeling exposure to airborne metals using moss biomonitoring in cemeteries in two urban areas around Paris and Lyon in France
2022
Lequy, Emeline | Meyer, Caroline | Vienneau, Danielle | Berr, Claudine | Goldberg, Marcel | Zins, Marie | Leblond, Sébastien | de Hoogh, Kees | Jacquemin, Bénédicte
Exposure of the general population to airborne metals remains poorly estimated despite the potential health risks. Passive moss biomonitoring can proxy air quality at fine resolution over large areas, mainly in rural areas. We adapted the technique to urban areas to develop fine concentration maps for several metals for Constances cohort's participants. We sampled Grimmia pulvinata in 77 and 51 cemeteries within ∼50 km of Paris and Lyon city centers, respectively. We developed land-use regression models for 14 metals including cadmium, lead, and antimony; potential predictors included the amount of urban, agricultural, forest, and water around cemeteries, population density, altitude, and distance to major roads. We used both kriging with external drift and land use regression followed by residual kriging when necessary to derive concentration maps (500 × 500 m) for each metal and region. Both approaches led to similar results. The most frequent predictors were the amount of urban, agricultural, or forest areas. Depending on the metal, the models explained part of the spatial variability, from 6% for vanadium in Lyon to 84% for antimony in Paris, but mostly between 20% and 60%, with better results for metals emitted by human activities. Moss biomonitoring in cemeteries proves efficient for obtaining airborne metal exposures in urban areas for the most common metals.
Show more [+] Less [-]Does ancient permafrost-derived organic carbon affect lake zooplankton growth? An experimental study on Daphnia magna
2022
Su, Yaling | Gan, Yingxin | Shi, Limei | Li, Kuanyi | Liu, Zhengwen
The popular paradigm in trophic dynamic theory is that contemporary autochthonous organic matter (e.g., phytoplankton) sustains consumer growth, whereas aged allochthonous organic matter is conceptually considered recalcitrant resources that may only be used to support consumer respiration but suppress consumer growth. This resource-age paradigm has been challenged by a growing body of recent evidence that ancient (radiocarbon depleted) organic carbon (OC) released from glaciers and permafrost can be incorporated by consumers in aquatic systems. However, little information is available regarding the food quality of ancient terrestrial OC and how it impacts the growth of consumers in lakes. Here, ancient dissolved organic carbon (DOC) was extracted from frozen soils in an alpine lake catchment. The contents of polyunsaturated fatty acids (PUFAs) in soil DOC increased significantly after bioconversion by heterotrophic bacteria. The utilization of soil DOC by heterotrophic bacteria also increased the total phosphorus concentration in the systems. Gammaproteobacteria and Betaproteobacteria showed a strong negative correlation with the percentage contents of fluorescent components, including humic-like and tyrosine-like components. Daphnia magna were fed Auxenochlorella vulgaris and ancient DOC plus heterotrophic bacteria. The contents of PUFAs and the growth of zooplankton were influenced by the pre-conversion time of ancient DOC by bacteria. When ancient DOC was pre-converted by bacteria for 27 days, D. magna fed on the mixed diets showed the highest body length (3.40 mm) and intrinsic rate of increase in population (0.49 d⁻¹). Our findings provide direct evidence that ancient terrestrial OC can be an important subsidy for lake secondary production, which have important implications for food webs in high-altitude and polar lakes.
Show more [+] Less [-]Soil CO2 and CH4 emissions and their carbon isotopic signatures linked to saturated and drained states of the Three Gorges Reservoir of China
2022
Zhang, Dandan | Li, Jinsheng | Wu, Junjun | Cheng, Xiaoli
Human activities such as dams disturb the structure and function of wetlands, triggering large soil CO₂ and CH₄ emissions. However, controls over field CO₂ and CH₄ emissions and their carbon isotopic signatures in reservoir wetlands are not yet fully understood. We investigated in situ CO₂ and CH₄ emissions, the δ¹³C values of CO₂ and CH₄, and associated environments in the saturated and drained states under four elevations (i.e., the water column, <147 m, permanent inundation area without plants; the low, 145–160 m, frequently flooded area with revegetation; the high, 160–175 m, rarely flooded area with revegetation; and the upland area as the control, >175 m, nonflooded area with original plants) in the Three Gorges Reservoir area. The CO₂ emissions was significantly higher in high elevation, and they also significantly differed between the saturated and drained states. In contrast, the CH₄ emissions on average (41.97 μg CH₄ m⁻² h⁻¹) were higher at high elevations than at low elevations (22.73 μg CH₄ m⁻² h⁻¹) during the whole observation period. CH₄ emissions decreased by 90% at low elevations and increased by 153% at high elevations from the saturated to drained states. The δ¹³C of CH₄ was more enriched at high elevations than in the low and upland areas, with a more depleted level under the saturated state than under the drained state. We found that soil CO₂ and CH₄ emissions were closely related to soil substrate quality (e.g., C: N ratio) and enzyme activities, whereas the δ¹³C values of CO₂ and CH₄ were primarily associated with root respiration and methanogenic bacteria, respectively. Specifically, the effects of the saturated and drained states on soil CO₂ and CH₄ emissions were stronger than the effect of reservoir elevation, thereby providing an important basis for assessing carbon neutrality in response to anthropogenic activities.
Show more [+] Less [-]Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau
2022
Niu, Hewen | Lu, Xixi | Zhang, Guotao | Sarangi, Chandan
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m² g⁻¹) than WSOC in the alpine river runoff (0.41 ± 0.26 m² g⁻¹). Ionic composition was dominated by SO₄²⁻, NO₃⁻, and NH₄⁺ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
Show more [+] Less [-]Polychlorinated biphenyls (PCBs) in soils from typical paddy fields of China: Occurrence, influencing factors and human health risks
2022
Niu, Lili | Mao, Shuduan | Zhou, Jinyi | Zhao, Lu | Zhu, Yuanqiao | Xu, Chao | Sun, Xiaohui | Sun, Jianqiang | Liu, Weiping
The contamination of paddy soils is of great concern since it links to human health via food supply. Limited knowledge is available on PCB residue characteristics and the associated health risks in paddy soils under various environmental conditions. In this study, a soil sampling campaign was conducted in three typical paddy fields, i.e., Sanjiang Plain (SP), Taihu Plain (TP) and Hani Terrace (HT), crossing a transect of 4000 km in China. The concentrations of 29 quantified PCBs varied from 58.6 to 1930 pg/g in paddy soils, with samples at TP showing the highest burden. Tri-CBs were the major homologue group at SP and HT, whereas hexa-CBs at TP. Altitude, temperature, soil organic matter content and soil conductivity well explained the variations in PCB concentrations among sites. The homologue profiles of soil PCBs followed the fractionation theory. In addition, soil conductivity was found to be negatively correlated to low-chlorinated PCBs and positively to high-chlorinated congeners. Furthermore, the toxicities of soil PCBs and the exposure risks through rice intake were estimated. Higher toxicity equivalent quantities and hazard indexes were found at SP than TP and HT, with over one third of the samples displaying health risks. The results of this work highlight the necessity to better understand the occurrence characteristics and the associated health risks of PCBs in soils of rice-growing regions.
Show more [+] Less [-]Novel brominated flame retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: Occurrence, distribution and influencing factors
2021
Xian, Hao | Hao, Yanfen | Lv, Jingya | Wang, Chu | Zuo, Peijie | Pei, Zhiguo | Li, Yingming | Yang, Ruiqiang | Zhang, Qinghua | Jiang, Guibin
Research on the environmental fate and behavior of novel brominated flame retardants (NBFRs) remains limited, especially in the remote alpine regions. In this study, the concentrations and distributions of NBFRs were investigated in soils and mosses collected from two slopes of Shergyla in the southeast of the Tibetan Plateau (TP), to unravel the environmental behaviors of NBFRs in this background area. The total NBFR concentrations (∑₇NBFRs) ranged from 34.2 to 879 pg/g dw in soil and from 72.8 to 2505 pg/g dw in moss. ∑₇NBFRs in soil samples collected in 2019 were significantly higher than those in 2012 (p < 0.05). Decabromodiphenyl ethane (DBDPE) was the predominant NBFR, accounting for 90% of ∑₇NBFRs on average. The ratio of the concentrations in moss and soil showed significantly positive correlations with LogKOA except for DBDPE (p < 0.05), indicating that the role of mosses as accumulators compared to soils are more pronounced for more volatile NBFRs. In addition, the concentrations of NBFRs generally decreased with increasing altitude on the south-facing slope, whereas on the north-facing slope some NBFRs exhibited different trends, suggesting concurrent local and long-range transport sources. Normalization based on total organic carbon/lipid concentrations strengthened the correlation with altitude, implying that the altitude gradient of the mountain slope and forest cover could jointly affect the distribution of NBFRs in the TP. Furthermore, principal components analysis (PCA) with multiple linear regression analysis (MLRA) showed that the average contribution of the mountain cold trapping effect (MCTE) accounted for the major (77%) contribution and forest filter effect (FFE) has only a modest contribution to the deposition of NBFRs in soil.
Show more [+] Less [-]Deep winter intrusions of urban black carbon into a canyon near Santiago, Chile: A pathway towards Andean glaciers
2021
Huneeus, Nicolás | Lapere, Rémy | Mazzeo, Andrea | Ordóñez Morales, César Eduardo | Donoso, Nicolás | Munoz, Ricardo | Rutllant, José A.
Black carbon transport from the Santiago Metropolitan Area, Chile, up to the adjacent Andes Cordillera and its glaciers is of major concern. Its deposition accelerates the melting of the snowpack, which could lead to stress on water supply in addition to climate feedback. A proposed pathway for this transport is the channelling through the network of canyons that connect the urban basin to the elevated summits, as suggested by modelling studies, although no observations have validated this hypothesis so far. In this work, atmospheric measurements from a dedicated field campaign conducted in winter 2015, under severe urban pollution conditions, in Santiago and the Maipo canyon, southeast of Santiago, are analysed. Wind (speed and direction) and particulate matter concentrations measured at the surface and along vertical profiles, demonstrate intrusions of thick layers (up to 600 m above ground) of urban black carbon deep into the canyon on several occasions. Transport of PM down-valley occurs mostly through shallow layers at the surface except in connection with deep valley intrusions, when a secondary layer in altitude with return flow (down-valley) at night is observed. The transported particulate matter is mostly from the vicinity of the entrance to the canyon and uncorrelated to concentrations observed in downtown Santiago. Reanalyses data show that for 10% of the wintertime days, deep intrusions into the Maipo canyon are prevented by easterly winds advecting air pollutants away from the Andes. Also, in 23% of the cases, intrusions proceed towards a secondary north-eastward branch of the Maipo canyon, leaving 67% of the cases with favourable conditions for deep penetrations into the main Maipo canyon. Reanalyses show that the wind directions associated to the 33% anomalous cases are related to thick cloud cover and/or the development of coastal lows.
Show more [+] Less [-]Spatiotemporal analysis of solar ultraviolet radiation based on Ozone Monitoring Instrument dataset in Iran, 2005–2019
2021
Gholamnia, Reza | Abtahi, Mehrnoosh | Dobaradaran, Sina | Koolivand, Ali | Jorfi, Sahand | Khaloo, Shokooh Sadat | Bagheri, Amin | Vaziri, Mohammad Hossein | Atabaki, Yasamin | Alhouei, Farnaz | Saeedi, Reza
The solar ultraviolet radiation (UVR) at national, provincial and county levels in Iran during 2005–2019 were determined based on Ozone Monitoring Instrument (OMI) dataset. The temporal (annual and monthly) trends and spatial distributions of the UVR in terms of erythemally weighted daily dose (EDD), erythemally weighted irradiance at local solar noon time (EDR), and UV index and the major factors influencing the spatiotemporal trends were analyzed. The population-weighted average values of EDD, EDR, and UV index in Iran were respectively 3631 J/m², 176.3 mW/m², 7.1 in 2005 and rose by 0.22% per year to 3744 J/m², 181.7 mW/m², and 7.3, respectively in 2019, but the annual trend was not statistically significant. The EDD in Iran during the study period exhibited the highest monthly average value in June (6339 J/m²) and the lowest one in December (1263 J/m²). The solar UVA/UVB ratios at the national level during 2005–2019 were considerably lower in summer. The EDD provincial average values in the study period were in the range of 2717 (Gilan) to 4424 J/m² (Fars). The spatiotemporal variations of the solar UVR parameters were well described by the linear models as a function of cloud optical thickness (COT), ozone column amount, surface albedo, latitude, and altitude (R² > 0.961, p value < 0.001) and the temporal changes of the solar UVR parameters were mainly caused by the COT. The results indicated that non-burning exposure to solar UVR in summer can be more efficient for vitamin D synthesis due to higher contribution of UVB in the solar UVR. The spatial distributions and temporal trends should be considered to determine the optimal duration, time and condition of exposure to the solar UVR for the public and occupational training and public health measures.
Show more [+] Less [-]