Refine search
Results 1-10 of 111
Ozone pollution in the plate and logistics capital of China: Insight into the formation, source apportionment, and regional transport
2022
Wang, Gang | Zhu, Zhongyi | Liu, Zhonglin | Liu, Xiaoyu | Kong, Fanhua | Nie, Liman | Gao, Wenkang | Zhao, Na | Lang, Jianlei
As the logistics and plate capital of China, the sources and regional transport of O₃ in Linyi are different from those in other cities because of the significant differences in industrial structure and geographical location. Twenty-five ozone pollution episodes (OPEs, 52 days) were identified in 2021, with a daily maximum 8-h moving average O₃ concentration (O₃₋MDA₈) of 184.5 ± 22.5 μg/m³. Oxygenated volatile organic compounds (OVOCs) and aromatics were the dominant contributors to ozone formation potential (OFP), with contributions of approximately 23.5–52.7% and 20.0–40.8%, respectively, followed by alkenes, alkanes, and alkynes. Formaldehyde, an OVOC with high concentrations emitted from the plate industry and vehicles, contributed the most to OFP (22.7 ± 5.5%), although formaldehyde concentrations only accounted for 9.4 ± 2.7% of the total non-methane hydrocarbon (NMHC) concentrations. The source apportionment results indicated that the plate industry was the dominant O₃ contributor (27.0%), followed by other sources (21.6%), vehicle-related sources (18.0%), solvent use (16.9%), liquefied petroleum gas (LPG)/natural gas (NG) (8.8%), and combustion sources (7.7%). Therefore, there is an urgent need to control the plating industry in Linyi to mitigate O₃ pollution. The backward trajectory, potential source contribution function (PSCF), and concentration weighted trajectory (CWT) models were used to identify the air mass pathways and potential source areas of air pollutants during the OPEs. O₃ pollution was predominantly affected by air masses that originated from eastern and local regions, while trajectories from the south contained the highest O₃ concentrations (207.0 μg/m³). The potential source area was from east and south Linyi during the OPEs. Therefore, it is critical to implement regional joint prevention and control measures to lower O₃ concentrations.
Show more [+] Less [-]Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: Metabolic processes
2021
The high global consumption of ibuprofen and its limited elimination by wastewater treatment plants (WWTPs), has led to the contamination of aquatic systems by this common analgesic and its metabolites. The potentially negative environmental and public health effects of this emerging contaminant have raised concerns, driving the demand for treatment technologies. The implementation of bacteria which mineralize organic contaminants in biopurification systems used to decontaminate water or directly in processes in WWTPs, is a cheap and sustainable means for complete elimination before release into the environment. In this work, an ibuprofen-mineralizing bacterial strain isolated from sediments of the River Elbe was characterized and assayed to remediate different ibuprofen-polluted media. Strain RW412, which was identified as Sphingopyxis granuli, has a 4.48 Mb genome which includes plasmid sequences which harbor the ipf genes that encode the first steps of ibuprofen mineralization. Here, we confirm that these genes encode enzymes which initiate CoA ligation to ibuprofen, followed by aromatic ring activation by a dioxygenase and retroaldol cleavage to unequivocally produce 4-isobutylcatechol and propionyl-CoA which then undergo further degradation. In liquid mineral salts medium, the strain eliminated more than 2 mM ibuprofen within 74 h with a generation time of 16 h. Upon inoculation into biopurification systems, it eliminated repeated doses of ibuprofen within a few days. Furthermore, in these systems the presence of RW412 avoided the accumulation of ibuprofen metabolites. In ibuprofen-spiked effluent from a municipal WWTP, ibuprofen removal by this strain was 7 times faster than by the indigenous microbiota. These results suggest that this strain can persist and remain active under environmentally relevant conditions, and may be a useful innovation to eliminate this emerging contaminant from urban wastewater treatment systems.
Show more [+] Less [-]Tricresyl phosphate isomers exert estrogenic effects via G protein-coupled estrogen receptor-mediated pathways
2020
Ji, Xiaoya | Li, Na | Ma, Mei | Rao, Kaifeng | Yang, Rong | Wang, Zijian
Tricresyl phosphates (TCPs), as representative aromatic organophosphate flame retardants (OPFRs), have received much attention due to their potential neurotoxicity and endocrine-disrupting effects. However, the role of estrogen receptor α (ERα) and G protein-coupled estrogen receptor (GPER) in their estrogen disrupting effects remains poorly understood. Therefore, in this study, three TCP isomers, tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP), were examined for their activities on ERα by using two-hybrid yeast assay, and action on GPER by using Boyden chamber assay, cAMP production assay, calcium mobilization assay and molecular docking analysis. The results showed that three TCP isomers were found to act as ERα antagonists. Conversely, they had agonistic activity on GPER to promote GPER-mediated cell migration of MCF7 cells and SKBR3 cells. Both ToCP and TpCP activated GPER-mediated cAMP production and calcium mobilization, whereas TmCP had different mode of action, it only triggered GPER-mediated calcium mobilization, as evidenced by using the specific GPER inhibitor (G15) and GPER overexpressing experiments. Molecular docking further revealed that the way of interaction of TmCP and TpCP with GPER was different from that of ToCP with GPER, and higher activity of ToCP in activating GPER-mediated pathways might be associated with the alkyl substitution at the ortho position of the aromatic ring. Our results, for the first time, found a new target, GPER, for TCPs exerting their estrogen-disrupting effects, and demonstrated complex estrogen-disrupting effects of three TCP isomers involved their opposite activities toward ERα and GPER.
Show more [+] Less [-]Mechanism of accelerating soot oxidation by NO2 from diesel engine exhaust
2020
Li, Zehong | Zhang, Wei | Chen, Zhaohui | Jiang, Qianyu
NO₂ oxidation of soot exhausted from engines is more efficient than O₂ under low-temperature conditions, and is crucial for diesel particulate filter to control soot pollution. To explore the principle behind accelerating soot oxidation by NO₂, this paper uses density functional theory to reveal soot oxidation process by NO₂. This study contributes to understanding rules of soot oxidation by NO₂ and perfecting soot oxidation models to develop soot emission control technologies. Results show that NO₂ oxidation of pyrene radical involves three steps. Firstly, NO₂ attacks the C∗ atom to form –C (NO₂) with reaction energy of 306.3 kJ/mol, which decomposes to produce a –C (O) compound. Secondly, another NO₂ molecule climbs over an energy barrier of 8.8 kJ/mol, and changes into a –C (ONO₂) intermediate on –C (O). Finally, the N or O atom of NO₂ attacks –C (O) for a second time to help open aromatic ring for releasing CO or CO₂. Further decomposition of –C (NO₂) and –C (ONO₂) requires activation energies of 81.6 kJ/mol, 75.7 kJ/mol, and 53.5 kJ/mol, respectively, on preferential pathways. Calculations prove that attacks of O atom from NO₂ on C∗ help open the aromatic ring more efficiently than N atom.
Show more [+] Less [-]Transformation of m-aminophenol by birnessite (δ-MnO2) mediated oxidative processes: Reaction kinetics, pathways and toxicity assessment
2020
Huang, Wenqian | Wu, Guowei | Xiao, Hong | Song, Haiyan | Gan, Shuzhao | Ruan, Shuhong | Gao, Zhihong | Song, Jianzhong
The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP. The results indicated that the transformation of m-AP with δ-MnO2 could be described by precursor complex formation rate-limiting model. The oxidative transformation of m-AP on the surface of δ-MnO2 was highly dependent on reactant concentrations, pH, temperature, and other co-solutes. The UV-VIS absorbance and mass spectra analysis indicated that the pathway leading to m-AP transformation may be the polymerization through the coupling reaction. The m-AP radicals were likely to be coupled by the covalent bonding between unsubstituted C2, C4 or C6 atoms in the m-AP aromatic rings to form oligomers as revealed by the results of activation energy and mass spectra. Furthermore, the toxicity assessment of the transformation productions indicated that the toxicity of m-AP to the E. coli K-12 could be reduced by MnO2 mediated transformation. The results are helpful for understanding the environmental behavior and potential risk of m-AP in natural environment.
Show more [+] Less [-]Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves
2020
Environmentally persistent free radicals (EPFRs) are receiving increasing concern due to their toxicity and ubiquity in the environment. To avoid restrictions imposed when using a high-volume active sampler, this study uses tree leaves to act as passive samplers to investigate the spatial distribution characteristics and sources of airborne EPFRs. Tree leaf samples were collected from 120 sites in five areas around China (each approximately 4 km × 4 km). EPFR concentrations in particles (<2 μm) on the surface of 110 leaf samples were detected, ranging from 7.5 × 10¹⁶ to 4.5 × 10¹⁹ spins/g. For the 10 N.D. samples, they were all collected from areas inaccessible by vehicles. The g-values of EPFRs on 68% leaf samples were larger than 2.004, suggesting the electron localized on the oxygen atom, and they were consistent with the road dust sample (g-value: 2.0042). Significant positive correlation was found between concentrations of elemental carbon (tracer of vehicle emissions) and EPFRs. Spatial distribution mapping showed that EPFR levels in various land uses differed noticeably. Although previous work has linked atmospheric EPFRs to waste incineration, the evidence in this study suggests that vehicle emissions, especially from heavy-duty vehicles, are the main sources. While waste incinerators with low emissions or effective dust-control devices might not be an important EPFR contributor. According to our estimation, over 90% of the EPFRs deposited on tree leaves might be attributed to automotive exhaust emissions, as a synergistic effect of primary exhausts and degradation of aromatic compounds in road dust. With adding the trapping agent into the particle samples (<2 μm), signals of hydroxyl radicals were observed. This indicates that EPFRs collected from this phytosampling method can lead to the release of reactive oxygen species (ROS) once they are inhaled by human beings. Thus, this study helps highlight EPFR “hotspots” for potential health risk identification.
Show more [+] Less [-]Cytochrome P450 1A transcript is a suitable biomarker of both exposure and response to diluted bitumen in developing frog embryos
2019
Lara-Jacobo, Linda R. | Willard, Brianna | Wallace, Sarah J. | Langlois, Valerie S.
In order for Alberta's thick bitumen to be transported through pipelines, condensates are added creating a diluted bitumen (dilbit) mixture. Recent pipeline expansion projects have generated concern about potential dilbit spills on aquatic wildlife health. Studies have suggested that polycyclic aromatic compounds (PACs) are toxic to aquatic vertebrates and could potentially also interfere with their endocrine system. The research objectives of this study were to investigate the toxicity of dilbit to developing frog embryos and to identify the molecular mechanisms of action involved. Fertilized embryos of Western clawed frog (Silurana tropicalis) were exposed for 72 h to water accommodated fractions (WAF; 0.7–8.9 μg/L TPACs) and chemically-enhanced WAFs (CEWAF; 0.09–56.7 μg/L TPACs) of Access Western Blend (AWB) and Cold Lake Blend (CLB) dilbits. Both dilbit's CEWAFs significantly increased embryonic mortality and malformation incidence in the highest treatments tested, while WAF treatments led to no visible toxic effects. Increases of the cytochrome P450 1A (cyp1a) mRNA levels were observed for all WAF and CEWAF dilbit treatments suggesting that phase I detoxification is activated in the dilbit-exposed larvae. When exposed to PAC concentrations ranging from 0.09 to 8.9 μg/L, the frogs displayed no observable malformations, but expressed significant increases of cyp1a mRNA levels (2- to 25-fold; indicating a suitable biomarker of exposure); however, when concentrations were of 46.6 μg/L or higher, both malformed frog phenotype and induction of cyp1a mRNA level (>250-fold) were measured (indicating a suitable biomarker of response). The expression of several genes related to cellular detoxification and endocrine disruption were also measured, but were not significantly altered by the treatments. In sum, cyp1a mRNA level is a highly sensitive endpoint to measure subtle molecular changes induced by PAC exposure in the frog embryos and larvae, and data suggest that PAC concentration higher than 46 μg/L would be toxic to the developing S. tropicalis.
Show more [+] Less [-]Characterization of a Dibenzofuran-degrading strain of Pseudomonas aeruginosa, FA-HZ1
2019
Ali, Fawad | Hu, Haiyang | Wang, Weiwei | Zhou, Zikang | Shah, Syed Bilal | Xu, Ping | Tang, Hongzhi
Dibenzofuran (DBF) derivatives have caused serious environmental problems, especially those produced by paper pulp bleaching and incineration processes. Prominent for its resilient mutagenicity and toxicity, DBF poses a major challenge to human health. In the present study, a new strain of Pseudomonas aeruginosa, FA-HZ1, with high DBF-degrading activity was isolated and identified. The determined optimum conditions for cell growth of strain FA-HZ1 were a temperature of 30 °C, pH 5.0, rotation rate of 200 rpm and 0.1 mM DBF as a carbon source. The biochemical and physiological features as well as usage of different carbon sources by FA-HZ1 were studied. The new strain was positive for arginine double hydrolase, gelatinase and citric acid, while it was negative for urease and lysine decarboxylase. It could utilize citric acid as its sole carbon source, but was negative for indole and H2S production. Intermediates of DBF 1,2-dihydroxy-1,2-dihydrodibenzofuran, 1,2-dihydroxydibenzofuran, 2-hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid, 2,3-dihydroxybenzofuran, 2-oxo-2-(2′-hydrophenyl)lactic acid, and 2-hydroxy-2-(2′-hydroxyphenyl)acetic acid were detected and identified through liquid chromatography-mass analyses. FA-HZ1 metabolizes DBF by both the angular and lateral dioxygenation pathways. The genomic study identified 158 genes that were involved in the catabolism of aromatic compounds. To identify the key genes responsible for DBF degradation, a proteomic study was performed. A total of 1459 proteins were identified in strain FA-HZ1, of which 100 were up-regulated and 104 were down-regulated. A novel enzyme “HZ6359 dioxygenase”, was amplified and expressed in pET-28a in E. coli BL21(DE3). The recombinant plasmid was successfully constructed, and was used for further experiments to verify its function. In addition, the strain FA-HZ1 can also degrade halogenated analogues such as 2, 8-dibromo dibenzofuran and 4-(4-bromophenyl) dibenzofuran. Undoubtedly, the isolation and characterization of new strain and the designed pathways is significant, as it could lead to the development of cost-effective and alternative remediation strategies. The degradation pathway of DBF by P. aeruginosa FA-HZ1 is a promising tool of biotechnological and environmental significance.
Show more [+] Less [-]Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment
2018
Bari, Md Aynul | Kindzierski, Warren B.
An investigation of ambient levels and sources of volatile organic compounds (VOCs) and associated public health risks was carried out at two northern Alberta oil sands communities (Fort McKay and Fort McMurray located < 25 km and >30 km from oil sands development, respectively) for the period January 2010–March 2015. Levels of total detected VOCs were comparatively similar at both communities (Fort McKay: geometric mean = 22.8 μg/m³, interquartile range, IQR = 13.8–41 μg/m³); (Fort McMurray: geometric mean = 23.3 μg/m³, IQR = 12.0–41 μg/m³). In general, methanol (24%–50%), alkanes (26%–32%) and acetaldehyde (23%–30%) were the predominant VOCs followed by acetone (20%–24%) and aromatics (∼9%). Mean and maximum ambient concentrations of selected hazardous VOCs were compared to health risk screening criteria used by United States regulatory agencies. The Positive matrix factorization (PMF) model was used to identify and apportion VOC sources at Fort McKay and Fort McMurray. Five sources were identified at Fort McKay, where four sources (oil sands fugitives, liquid/unburned fuel, ethylbenzene/xylene-rich and petroleum processing) were oil sands related emissions and contributed to 70% of total VOCs. At Fort McMurray six sources were identified, where local sources other than oil sands development were also observed. Contribution of aged air mass/regional transport including biomass burning emissions was ∼30% of total VOCs at both communities. Source-specific carcinogenic and non-carcinogenic risk values were also calculated and were below acceptable and safe levels of risk, except for aged air mass/regional transport (at both communities), and ethylbenzene/xylene-rich (only at Fort McMurray).
Show more [+] Less [-]Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C
2018
Yang, Kun | Jiang, Yuan | Yang, Jingjing | Lin, Daohui
Knowledge of adsorption behavior of organic contaminants on high heat temperature treated biochars is essential for application of biochars as adsorbents in wastewater treatment and soil remediation. In this study, isotherms of 25 aromatic compounds adsorption on biochars pyrolyzed at 700 °C from biomass including wood chips, rice straw, bamboo chips, cellulose, lignin and chitin were investigated to establish correlations between adsorption behavior and physicochemical properties of biochars. Isotherms were well fitted by Polanyi theory-based Dubinin-Ashtakhov (DA) model with three parameters, i.e., adsorption capacity (Q⁰) and adsorption affinity (E and b). Besides the negative correlation of Q⁰ with molecular maximum cross-sectional areas (σ) of organic compounds, positive correlations of Q⁰ with total pore volume (Vₜₒₜₐₗ) and average diameter of micropore (D) of biochars were observed, indicating that adsorption by biochars is captured by the pore-filling mechanism with molecular sieving effect in biochar pores. Linear solvation energy relationships (LSERs) of adsorption affinity (E) with solvatochromic parameters of organic compounds (i. e., αₘ and π∗) were established, suggesting that hydrophobic effect, π-π interaction and hydrogen-bonding interaction are the main forces responsible for adsorption. The regression coefficient (π₁) and intercept (C) of obtained LSERs are correlated with biochar H/C and Rₘᵢcᵣₒ, respectively, implying that biochars with higher aromaticity and more micropores have stronger π-π bonding potential and hydrophobic effect potential with aromatic molecule, respectively. However, hydrogen-bonding potential of biochars for organic molecules is not changed significantly with properties of biochars. A negative correlation of b with biochar H/C is also obtained. These correlations could be used to predict the adsorption behavior of organic compounds on high heat temperature treated biochars from various biomass for the application of biochars as sorbents and for the estimating of environmental risks of organic compounds in the present of biochars.
Show more [+] Less [-]