Refine search
Results 21-30 of 3,718
Two low-toxic Klebsiella pneumoniae strains from gut of black soldier fly Hermetia illucens are multi-resistance to sulfonamides and cadmium Full text
2022
Shi, Zhihui | Zhang, Jie | Jiang, Yijie | Wen, Yiting | Gao, Zhenghui | Deng, Wenhui | Yin, Yumeng | Zhu, Fen
In recent years, pollution of antibiotics and heavy metal has often been reported in organic wastes. Saprophytic insects have been recorded as biological control agents in organic waste management. During organic waste conversion, the intestinal bacteria of the saprophytic insects play an important role in digestion, physiology, immunity and prevention of pathogen colonization. Black soldier fly (BSF) Hermetia illucens has been widely used as saprophytic insects and showed tolerance to sulfonamides (SAs) and cadmium (Cd). Diversity and changes in gut microbiota of black soldier fly larvae (BSFL) were evaluated through 16S rRNA high-throughput sequencing, and a decrease in diversity of gut microbiota along with an increase in SAs stress was recorded. Major members identified were Actinomycetaceae, Enterobacteriaceae, and Enterococcaceae. And fourteen multi-resistance Klebsiella pneumoniae strains were isolated. Two strains BSFL7-B-5 (from middle midgut of 7-day BSFL) and BSFL11-C-1 (from posterior midgut of 11-day BSFL) were found to be low-toxic and multi-resistance. The adsorption rate of SAs in 5 mg/kg solutions by these two strains reached 65.2% and 61.6%, respectively. Adsorption rate of Cd in 20 mg/L solutions was 77.2% for BSFL7-B-5. The strain BSFL11-C-1 showed higher than 70% adsorption rates of Cd in 20, 30 and 40 mg/L solutions. This study revealed that the presence of multi-resistance bacterial strains in the gut of BSFL helped the larvae against SAs or Cd stress. After determining how and where they are used, selected BSFL gut bacterial strains might be utilized in managing SAs or Cd contamination at suitable concentrations in the future.
Show more [+] Less [-]Multigenerational exposure of the collembolan Folsomia candida to soil metals: Adaption to metal stress in soils polluted over the long term Full text
2022
Zhang, Yabing | Li, Zhu | Ke, Xin | Wu, Longhua | Christie, Peter
Multigenerational tests provide a comprehensive assessment of the long-term toxicity of pollutants. Here, the multigenerational effects of soil metal contamination on Folsomia candida were investigated over five generations (generations 1–5: F1–F5). Nine soils with varying physicochemical properties and degrees of metal pollution were studied. The selected endpoints were survival, reproduction, body size and body metal concentrations. F. candida was cultured only up to the fifth generation with high reproduction in contaminated acid soils where reproduction was at least 5 times that in neutral soils and 20 times that in calcareous soils. Correlation analysis indicated that soil pH (68.9% contribution) and cation exchange capacity (CEC, 15.4% contribution) were more important factors than pollution level affecting the reproduction of F. candida. No significant difference was observed in adult survival or adult length over five generations. The highest collembolan body Cd concentrations in soils A1-A3 were 3.15, 2.93 and 3.23 times those in F1, with similar results for body Pb. A similar trend in reproduction and juvenile length was observed with an initial decrease (p < 0.05) and then an increase (p < 0.05) over the generations in each acid soil; the opposite trend occurred in the changes in body cadmium (Cd) and lead (Pb) concentrations which increased initially (p < 0.05) and then decreased (p < 0.05) compared to the original concentrations of the first generation. The results indicate that F. candida can adapt to soil metal stress during multigenerational exposure and the adaption energy may be related to a tradeoff between reproduction or growth of juveniles and the detoxification of metals accumulated in the body. Soil properties, especially pH and CEC, had a substantial influence on the long-term survival of the collembolan in the metal-polluted soils.
Show more [+] Less [-]Modulation of osmoprotection and antioxidant defense by exogenously applied acetate enhances cadmium stress tolerance in lentil seedlings Full text
2022
Shahadat Hossain, Md. | Abdelrahman, Mostafa | Tran, Cuong Duy | Nguyen, Kien Huu | Chu, Ha Duc | Watanabe, Yasuko | Fujita, Masayuki | Tran, Lam-son Phan
To examine the potential role of acetate in conferring cadmium (Cd) stress tolerance in lentil (Lens culinaris), several phenotypical and physio-biochemical properties have been examined in Cd-stressed lentil seedlings following acetate applications. Acetate treatment inhibited the translocation of Cd from roots to shoots, which resulted in a minimal reduction in photosynthetic pigment contents. Additionally, acetate-treated lentil showed higher shoot (1.1 and 11.72%) and root (4.98 and 30.64%) dry weights compared with acetate-non-treated plants under low-Cd and high-Cd concentrations, respectively. Concurrently, acetate treatments increase osmoprotection under low-Cd stress through proline accumulation (24.69%), as well as enhancement of antioxidant defense by increasing ascorbic acid content (239.13%) and catalase activity (148.51%) under high-Cd stress. Acetate-induced antioxidant defense resulted in a significant diminution in hydrogen peroxide, malondialdehyde and electrolyte leakage in Cd-stressed lentil seedlings. Our results indicated that acetate application mitigated oxidative stress-induced damage by modulating antioxidant defense and osmoprotection, and reducing root-to-shoot Cd transport. These findings indicate an important contribution of acetate in mitigating the Cd toxicity during growth and development of lentil seedlings, and suggest that the exogenous applications of acetate could be an economical and new avenue for controlling heavy metal-caused damage in lentil, and potentially in many other crops.
Show more [+] Less [-]Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides Full text
2022
Tan, Wen-Tao | Zhou, Hang | Tang, Shang-Feng | Zeng, Peng | Gu, Jiao-Feng | Liao, Bo-Han
Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron–manganese oxides could be introduced into biochar. In this study, iron–manganese (Fe–Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS). Adsorption kinetics showed that the maximum adsorption capacity of BC-FM for Cd(II) was 120.77 mg/g at 298 K, which was approximately 1.5–10 times the amount of adsorption capacity for Cd(II) by potassium-modified or manganese-modified biochar as mentioned in the literature. The Cd(II) adsorption of BC-FM was well fit by the pseudo-second-order adsorption and Langmuir models, and it was a spontaneous and endothermic process. Adsorption was mainly controlled via a chemical adsorption mechanism. Moreover, BC-FM could maintain a Cd removal rate of approximately 50% even when reused three times. Cd(II) capture by BC-FM was facilitated by coprecipitation, surface complexation, electrostatic attraction, and cation-π interaction. Additionally, the loaded Fe–Mn oxides also played an important role in the removal of Cd(II) by redox reaction and ion exchange in BC-FM. The results suggested that BC-FM could be used as an efficient adsorbent for treating Cd-contaminated wastewater.
Show more [+] Less [-]Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.) Full text
2022
Li, Yan | Zhang, Shengnan | Bao, Qiongli | Chu, Yutan | Sun, Hongyu | Huang, Yizong
Cadmium (Cd) is a potentially hazardous element with substantial biological toxicity, adversely affecting plant growth and physiological metabolism. Therefore, it is necessary to explore practical and environment-friendly approaches to reduce toxicity. Jasmonic acid (JA) is an endogenous growth regulator which helps plants defend against biological and abiotic stresses. To determine how JA help relieve Cd toxicity in rice, both laboratory and field experiments were implemented. In the seedling stage, the role of JA in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry. At the mature growth stage of rice, field experiments were implemented to research the effects of JA on the Cd uptake and translocation in rice. In the seedling stage of rice, we found that JA application increased the cell wall compartmentalization of Cd by promoting the Cd combination on chelated-soluble pectin of rice roots and inhibited Cd movement into protoplasts, thereby reducing the Cd content in the roots by 30.5% and in the shoots by 53.3%, respectively. Application of JA reduced H₂O₂ content and helped relieve Cd-induced peroxidation damage of membrane lipid by increasing the level of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione (GSH), but had no significant effect on the superoxide dismutase (SOD) activity. Additionally, field experiments showed that foliar spraying of JA inhibited rice Cd transport from the stalk and root to the grain and reduced Cd concentration in grain by 29.7% in the high-Cd fields and 28.0% in the low-Cd fields. These results improve our understanding of how JA contributes to resistance against Cd toxicity in rice plants and reduces the accumulation of Cd in rice kernels.
Show more [+] Less [-]Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium Full text
2022
He, Xian | Nkoh, Jackson Nkoh | Shi, Ren-yong | Xu, Ren-kou
To develop more green, practical and efficient biochar amendments for acidic soils, chitosan-modified biochar (CRB) and alginate-modified biochar (ARB) were prepared, and their effects on promoting soil pH buffering capacity (pHBC) and immobilizing cadmium (Cd) in the paddy soils were investigated through indoor incubation experiments. The results of Fourier transform infrared spectroscopy and Boehm titration indicated that the introduction of chitosan and sodium alginate effectively amplified the functional groups of the biochar, and improved acid buffering capacity of the biochar. Since there was a plateau region between pH 4.5 and 5.5 in acid-base titration curve of the CRB, adding this biochar to acidic paddy soils apparently improved the pHBC and enhanced the acidification resistance of the paddy soils. The addition of ARB enhanced the reduction reactions during submerging and weakened the oxidation reactions during draining, thus retarded the decline of paddy soil pH during drainage. Furthermore, the pH of the paddy soils with ARB addition was higher at the end of draining, which reduced the activity of soil Cd. Considering the environmental sustainability of chitosan and sodium alginate and convenience of preparation method, biochars modified with these two materials provided alternatives for acidic paddy soil amelioration and heavy metal immobilization. However, the additional experiments should be conducted under field conditions to confirm practical application effects in the future.
Show more [+] Less [-]Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice Full text
2022
Raghuvanshi, Rishiraj | Raut, Vaibhavi V. | Pandey, Manish | Jeyakumar, Subbiah | Verulkar, Satish | Suprasanna, Penna | Srivastava, Ashish Kumar
Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH₄⁺ as As-associated key macronutrient; while, NH₄⁺/NO₃⁻ and K⁺ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)<IR-64(As)<PB-1(Cd)<IR-64(Cd). A feed-forward model is proposed to explain nutrient deficiency induced de-regulation of gene expression, as observed under Cd-treated IR-64 plants, which was also validated at the level of sulphur metabolism related enzymes. Using urea supplementation, as nitrogen-fertilizer, significant mitigation was observed under As stress, as indicated by 1.018- and 0.794-fold increase in shoot biomass in IR-64 and PB-1, respectively compared to that of control. However, no significant amelioration was observed in response to supplementation of urea under Cd or potassium under As/Cd stress conditions. Thus, the study pinpointed the relative significance of various macronutrients in regulating As- and Cd-tolerance and will help in designing suitable strategies for mitigating As and/or Cd stress conditions.
Show more [+] Less [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to ¹⁰⁹Cd- or ⁶⁵Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L⁻¹ (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and ¹⁰⁹Cd or ⁶⁵Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7ᵗʰ day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Show more [+] Less [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-18-CE34-0013,APPROve,Démarche intégrée pour proposer la protéomique dans la surveillance : accumulation, devenir et multimarqueurs(2018)
International audience | One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to 109 Cd-or 65 Znradiolabeled water at a concentration of 52.1 and 416 ng.L-1 (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and 109 Cd or 65 Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7 th day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Show more [+] Less [-]The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands Full text
2022
Zhang, Xiaoqing | Li, Ya | Ye, Jun | Chen, Zhihua | Ren, Dajun | Zhang, Shuqin
The quality and quantity of dissolved organic matter (DOM) greatly controls the fate of heavy metals. The characteristics of DOM and its interaction with metals are essential for the metal ecological risk assessment of soils. In this study, the DOM spectral characteristics of representative forest soils and the complex capacities between fluorescent DOM components and cadmium (Cd) were analyzed. Functional groups, such as carboxylic acids, alcohols and phenols, were determined by FT-IR analysis. Chromophoric DOM, fluorescent DOM and dissolved organic carbon (DOC) concentrations exhibited strong correlations with each other, indicating that variations of DOC could be well explained by Chromophoric DOM or fluorescent DOM due to high correlation coefficients. The spectral slope ratio was in the range of 0.85–5.90, implying an abundance of heavy macromolecular humic acids, peptides, and polycondensates. The absorbance spectral at 254 nm (SUVA₂₅₄) strongly correlated with SUVA₂₆₀ (r = 0.992, P < 0.01), indicating that hydrophobicity closely related with aromatic structure, and aromatic groups could be broadly hydrophobic. Fluorescence indices were from 1.62 to 2.21 and biological index values ranged from 0.54 to 1.14, where the DOM was mainly sourced from mixed terrestrial and autogenous inputs in most sites. Four universal fluorescence components were identified and characterized by fluorescence EEM-PARAFAC, including two humic-like (components 1 and 2), one tyrosine-like (components 3) and one fulvic-like (components 4) component. Both components 3 and 4 showed fluorescence quenching with increasing Cd concentrations, while components 1 and 2 had no evident change in fluorescence intensity. The logK₃ and logK₄ values ranged from 4.41 to 5.29 and 4.71 to 5.54, respectively, with most logK values of component 3 for Cd binding being smaller than that of component 4, thus, indicating that the fulvic acid substances exhibited stronger and more stable interactions with Cd than protein-like components.
Show more [+] Less [-]Iron-doped hydroxyapatite for the simultaneous remediation of lead-, cadmium- and arsenic-co-contaminated soil Full text
2022
Yang, Zhihui | Gong, Hangyuan | He, Fangshu | Repo, Eveliina | Yang, Weichun | Liao, Qi | Zhao, Feiping
Since lead, cadmium and arsenic have completely opposite chemical behaviors, it is very difficult to stabilize all these three heavy metals simultaneously. Herein, a novel iron-doped hydroxyapatite composite (Fe-HAP) was developed via an ultrasonic-assisted microwave hydrothermal method for the simultaneous remediation of lead-, cadmium-, and arsenic-co-contaminated soil in Hunan Province, South China. Using DTPA/sodium bicarbonate extractant to extract bioavailable Pb, Cd and As in soil after Fe-HAP remediation for 60 days, the immobilization efficiencies were 79.77%, 51.3% and 37.5% for Pb, Cd and As, respectively. The soil extractable and exchangeable fractions of Pb, Cd and As decreased significantly. In batch experiments, the adsorption kinetics of Pb, Cd and As on Fe-HAP were well described by pseudo-second-order models, indicating that the adsorption is controlled by chemisorption. In the Langmuir adsorption isotherm, the maximum adsorption capacities of Cd²⁺ and As(V) were 476.2 mg g⁻¹ and 195.69 mg g⁻¹, respectively, while Pb²⁺ fit the Freundlich model better. The XRD, SEM and XPS analyses indicated that Fe-HAP formed stable minerals of Pb₅(PO₄)₃OH, Cd₃(PO₄)₂·4H₂O, Cd(OH)₂ and Fe₃(AsO₄)₂·6H₂O with Pb, Cd and As. Overall, its facile and efficient immobilization performance indicate that Fe-HAP has potential for practical applications in integrative remediation of Pb-, Cd-, and As- co-contaminated soil.
Show more [+] Less [-]