Refine search
Results 11-20 of 1,994
Nutrient concentrations in the foliage of beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. Karst.) plants of a model ecosystem in response to long-term exposure to atmospheric CO2 enrichment and increased N deposition
2002
Landolt, W. | Egli, P. | Pezzotta, D. | Bucher, J. B. (Swiss Federal Research Institute WSL, Birmensdorf (Switzerland))
The biological effects of both elevated CO2 and N deposition on model ecosystem were investigated in the Birmensdorf open-top chamber facility. Each of the 16 chambers was divided into two compartments with a ground area of 3 msub2 and filled with natural unfertilized forest soils from two sites (one acidic, the other calcareous). Elevated CO2 significantly increased O and Zn concentrations in beech leaves and those of Zn in spruce needles on the calcareous soils. Enhanced N deposition also led to a dilution of nutrients and increased N contents
Show more [+] Less [-]Moderation of CO2 induced gas exchange and growth responses by elevated tropospheric O3
2002
Karnosky, D. F. (Michigan Technological University, Houghton (USA). School of Forestry and Wood Products) | Sober, A. | Sharma, P. | Kubiske, M. | Isebrands, J.G.
Stimulation of photosynthesis by elevated CO2 has been consistently found for aspen but not for maple. Similar responses have been shown for growth. In contrast, O3 causes decreased levels of photosynthesis and growth in aspen but does not appear to impact sugar maple significantly. When the pollutants co-occur, CO2 induced enhancements in photosynthesis and growth are moderated so that trees in CO2 and O3 treatments respond similarly to those in control rings. In this presentation, we will provide a physiological interpretation of our results in modelling growth response under future atmospheric conditions
Show more [+] Less [-]Effect of increased carbon dioxide and ozone on leaf spot pathogens of birch
2002
Syrjala, L. | Poteri, M. (Finnish Forest Research Institute, Suonenjoki (Finland). Suonenjoki Research Station)
Both CO2 and ozone increased the diseased leaf area of clone V5952 in Exp. 1 in the year 2000. The size of spots increased most under ozone fumigation, and the number of spots under ozone and CO2 + O3 fumigations. In clone K1659 all fumigation treatments decreased or had no effect on the DLA, or the number and size of the leaf spots. Also the number of fallen leaves under fumigation treatments was higher in clone V5952 than in clone K1659. Analysis of the year 2001 monitoring results is currently going on
Show more [+] Less [-]Consequences of elevated CO2 and O3 on birch canopy structure
2002
Kull, O. (University of Tartu, Tartu (Estonia). Institute of Botany and Ecology) | Tulva, I. | Vapaavuori, E.
We studied elevated CO2 and ozone effects in single and in combination on crown structure of two Betula pendula clones. Shoot ramification, shoot length, number of metamers, leaves and buds were measured at four heights in every tree. Chamber effect was substantial on sylleptic branching and on shoot length and ramification. However these responses differed between the clones. Ozone treatment affected shoot length and caused slight decrease in shoot ramification. Elevated CO2 affected appearance of long shoots in complex manner, but in lower crown positions CO2 caused increased number of long shoots in both clones
Show more [+] Less [-]Effect of increasing ozone and carbon dioxide on photosynthetic and related biochemical properties of two silver birch clones during three years of exposure
2002
Riikonen, J. (Finnish Forest Research Institute, Suonenjoki (Finland). Suonenjoki Research Station) | Holopainen, T. | Oksanen, E. | Vapaavuori, E.
Under elevated CO2 photosynthesis was 15-50% higher than in chamber controls depending on the weather conditions of the growing seasons. When measured at 360 ppm CO2 both elevated CO2 and elevated CO2 + O3 treatments decreased net photosynthesis, stomatal conductance and also transpiration, indicating downregulation of photosynthesis at elevated CO2
Show more [+] Less [-]The role of roots and mycorrhizas in C-sequestration under elevated CO2 (popface)
2002
Lukac, M. | Godbold, D.L. (University of Wales, Bangor (United Kingdom). SAFS)
The need to assess the role of terrestrial ecosystems in the global C cycle and the potential change of this role as the atmospheric concentration of CO2 increases attracted considerable scientific attention over the recent decade. In order to assess ecosystem responses as a whole and to evaluate the potential role of forests and tree communities as a carbon sinks, the below-ground response to increasing levels of CO2 must be addressed
Show more [+] Less [-]Effects of elevated CO2 and O3 on silver birch rhizosphere and leaf litter decomposition
2002
Kasurinen, A. (University of Kuopio, Kuopio (Finland). Department of Ecology and Environmental Science) | Vapaavuori, E. | Holopainen, J. K. | Holopainen, T.
There is still limited amount of information about the long-term and interactive effects of increased CO2 and O3 levels on larger forest trees growing under natural or semi-natural conditions. Elevated CO2 and O3 might affect the quality and quantity of leaf litter produced and thus change litter decomposition rates and nutrient cycling in the forest ecosystems severely. In this long-term field experiment we studied the effects of realistically increased CO2 and O3 levels on fine root and mycorrhiza growth in ozone-tolerant and ozone-sensitive silver birch clones by root ingrowth core method. We measured rhizosphere soil CO2 efflux plus assessed the total fungal biomass of fine roots and soil by ergosterol analysis
Show more [+] Less [-]Ponderosa pine response to elevated CO2 and nitrogen
2002
Johnson, D.W. (University of Nevada, Reno (USA). Environmental and Resource Sciences) | Ball, J.T. | Hoylman, A.M. | Walker, R.F.
This paper summarizes the data on growth response and N uptake in open-top chambers planted with ponderosa pine (Pinus ponderosa Laws.) treated with both N (0, 10, and 20 g N msub-2 yrsub-1 as ammonium sulfate ) and CO2. Both N and elevated CO2 caused increased growth. The effects of N on growth response to elevated CO2 were assessed in various ways and various interpretations could be drawn depending on which metric was used, including a negative effect of N on growth response to CO2. These calculations suggest that expressing growth as percentages can be misleading, especially when done on a grams per tree basis
Show more [+] Less [-]Decadal acidification in a subtropical coastal area under chronic eutrophication Full text
2022
Yao, Hongming | Wang, Jiujuan | Han, Yu | Jiang, Xiaoli | Chen, Jinsong
Coastal acidification is often much more intense than ocean acidification due to eutrophication. To better understand the relationship between long-term coastal acidification (CA) and coastal eutrophication (CE), in-situ monthly data over the past three decades (1986–2017) were analyzed from Hong Kong Coast (HKC). The coastwide annual mean pH change (ΔpHₘₑₐₙ) was estimated at −0.0085 ± 0.0069 unit·yr⁻¹ in last decades, which was over four times stronger than current estimation on open ocean acidification rate (∼−0.0019 unit·yr⁻¹). According to the CA spatial pattern, greater pH decline (ΔpHₘₑₐₙ = −0.017 ± 0.009 unit·yr⁻¹) occurred in northwest, central south and central east HKC areas, much higher than the less acidified (ΔpHₘₑₐₙ = −0.004 ± 0.002 unit·yr⁻¹) southwest and northeast HKC areas. The spatiotemporal CA variations were associated with water discharges, atmospheric CO₂ increase and respiration/production that was indicated by DIN:DIP structure changes. The annual mean DIN:DIP ratio increased progressively from initial ∼16 in 1986 to ∼37 in 2017, revealing excess nitrogen load from rapid urbanization in this region. Such discharge-induced acidification was estimated as the major contributor for the total CA in HKC over the last three decades. In addition, our simulation results indicated that a potential CA rate at ∼0.0035 unit·yr⁻¹ could be reached if reducing mean DIN:DIP from discharged water to ∼23 from HKC. This study revealed a previously not recognized relationship between coastal acidification and changing coastal nutrient stoichiometry, and proposed possible management approaches.
Show more [+] Less [-]Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay Full text
2022
Zhang, Lei | He, Kai | Wang, Tong | Liu, Cheng | An, Yanfei | Zhong, Jicheng
Freshwater ecosystems play a key role in global greenhouse gas estimations and carbon budgets, and algal blooms are widespread owing to intensified anthropological activities. However, little is known about greenhouse gas dynamics in freshwater experiencing frequent algal blooms. Therefore, to explore the spatial and temporal variations in methane (CH₄) and carbon dioxide (CO₂), seasonal field investigations were performed in the Northwest Bay of Lake Chaohu (China), where there are frequent algal blooms. From the highest site in the nearshore to the pelagic zones, the CH₄ concentration in water decreased by at least 80%, and this dynamic was most obvious in warm seasons when algal blooms occurred. CH₄ was 2–3 orders of magnitude higher than the saturated concentration, with the highest in spring, which makes this bay a constant source of CH₄. However, unlike CH₄, CO₂ did not change substantially, and river mouths acted as hotspots for CO₂ in most situations. The highest CO₂ concentration appeared in winter and was saturated, whereas at other times, CO₂ was unsaturated and acted as a sink. The intensive photosynthesis of rich algae decreased the CO₂ in the water and increased dissolved oxygen and pH. The increase in CH₄ in the bay was attributed to the mineralization of autochthonous organic carbon. These findings suggest that frequent algal blooms will greatly absorb more CO₂ from atmosphere and increasingly release CH₄, therefore, the contribution of the bay to the lake's CH₄ emissions and carbon budget will be major even though it is small. The results of this study will be the same to other shallow lakes with frequent algal bloom, making lakes a more important part of the carbon budget and greenhouse gases emission.
Show more [+] Less [-]