Refine search
Results 1-10 of 109
Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence Full text
2022
Ding, Ting | Yan, Wei | Zhou, Ting | Shen, Wei | Wang, Tian | Li, Milu | Zhou, Su | Wu, Meng | Dai, Jun | Huang, Kecheng | Zhang, Jinjin | Chang, Jiang | Wang, Shixuan
Endocrine-disrupting chemicals (EDCs) are ubiquitous in daily life, but their harmful effects on the human body have not been fully explored. Recent studies have shown that EDCs exposure could lead to infertility, menstrual disorder and menopause, resulting in subsequent effects on female health. Therefore, it is of great significance to clarify and summarize the impacts of EDCs on ovarian aging for explaining the etiology of ovarian aging and maintaining female reproductive health. Here in this review, we focused on the impacts of ten typical environmental contaminants on the progression of ovarian aging during adult exposure, including epidemiological data in humans and experimental models in rodents, with their clinical phenotypes and underlying mechanisms. We found that both persistent (polychlorinated biphenyls, perfluoroalkyl and polyfluoroalkyl substances) and non-persistent (phthalates) EDCs exposure could increase an overall risk of ovarian aging, leading to the diminish of ovarian reserve, decline of fertility or fecundity, irregularity of the menstrual cycle and an earlier age at menopause, and/or premature ovarian insufficiency/failure in epidemiological studies. Among these, the loss of follicles can also be validated in experimental studies of some EDCs, such as BPA, phthalates, parabens and PCBs. The underlying mechanisms may involve the impaired ovarian follicular development by altering receptor-mediated pro-apoptotic pathways, inducing signal transduction and cell cycle arrest and epigenetic modification. However, there were inconsistent results in the impacts on fertility/fecundity, menstrual/estrous cycle and hormone changes response to different EDCs, and differences between human and animal studies. Our review summarizes the current state of knowledge on ovarian disrupters, highlights their risks to ovarian aging and identifies knowledge gaps in humans and animals. We therefore propose that females adopt healthy lifestyle changes to minimize their exposure to both persistent and non-persistent chemicals, that have the potential damage to their reproductive function.
Show more [+] Less [-]Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes) Full text
2022
González-Doncel, Miguel | García-Mauriño, José Enrique | Beltrán, Eulalia María | Fernández Torija, Carlos | Andreu-Sánchez, Oscar | Pablos, María Victoria
Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes) Full text
2022
González-Doncel, Miguel | García-Mauriño, José Enrique | Beltrán, Eulalia María | Fernández Torija, Carlos | Andreu-Sánchez, Oscar | Pablos, María Victoria
The number of published studies evaluating the effects of microplastics (MPs) in fish has increased in the last decade. However, of the available studies, few have explored the long-term effects of MPs on fish growth and reproduction and have resorted to MPs in the form of μm-sized beads/microspheres. In this study, 6-10 day-old post-hatch medaka (Oryzias latipes) fish were exposed to 50 (i.e. 1X) and 500 (i.e. 10X) μg of heterogeneously sized and irregularly shaped virgin polystyrene (PS) MP particles (200-μm range)/L for 150 days. These concentrations corresponded to respective daily mean values of 247 and 3087 particles/L administered through the diet. The PS MPs dietary exposure resulted in body burdens of 114 and 440 particles/g fish on day 50, and of 78 and 173 particles/g fish on day 100 since the respective exposures to the 1X and the 10X treatments started. The biometric analyses found no incidence of PS MPs ingestion on overall fish growth and development. The histological survey in the 10X group did not reveal alterations in gills or in the digestive tract. Mild alterations in other organs were seen and included increased fluid material in the peritoneal cavity, glomerular and tubular alterations in kidneys, and differences in the diameter of the thyroid follicles and thickness of the follicular epithelial cells. The initial days of the reproductive phase revealed MP-related differences in the number of gravid females, fecundity, and fertilization rates. Overall, these values reverted to normal rates throughout the succeeding days. No significant effects of PS MPs exposure were evidenced on offspring success. The 150-day PS MPs dietary exposure used in this study provided clues of histological effects and a reproduction delay. However, it did not seem to compromise overall growth/thriving and the ongoing reproduction.
Show more [+] Less [-]Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes) Full text
2022
Gonzalez-Doncel, M. | García-Mauriño, J. E. | María Beltrán, E. | Fernández Torija, C. | Andreu-Sánchez, Oscar | Pablos Chi, M. V.
The number of published studies evaluating the effects of microplastics (MPs) in fish has increased in the last decade. However, of the available studies, few have explored the long-term effects of MPs on fish growth and reproduction and have resorted to MPs in the form of μm-sized beads/microspheres. In this study, 6-10 day-old post-hatch medaka (Oryzias latipes) fish were exposed to 50 (i.e. 1X) and 500 (i.e. 10X) μg of heterogeneously sized and irregularly shaped virgin polystyrene (PS) MP particles (200-μm range)/L for 150 days. These concentrations corresponded to respective daily mean values of 247 and 3087 particles/L administered through the diet. The PS MPs dietary exposure resulted in body burdens of 114 and 440 particles/g fish on day 50, and of 78 and 173 particles/g fish on day 100 since the respective exposures to the 1X and the 10X treatments started. The biometric analyses found no incidence of PS MPs ingestion on overall fish growth and development. The histological survey in the 10X group did not reveal alterations in gills or in the digestive tract. Mild alterations in other organs were seen and included increased fluid material in the peritoneal cavity, glomerular and tubular alterations in kidneys, and differences in the diameter of the thyroid follicles and thickness of the follicular epithelial cells. The initial days of the reproductive phase revealed MP-related differences in the number of gravid females, fecundity, and fertilization rates. Overall, these values reverted to normal rates throughout the succeeding days. No significant effects of PS MPs exposure were evidenced on offspring success. The 150-day PS MPs dietary exposure used in this study provided clues of histological effects and a reproduction delay. However, it did not seem to compromise overall growth/thriving and the ongoing reproduction.
Show more [+] Less [-]Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes) Full text
2022
The number of published studies evaluating the effects of microplastics (MPs) in fish has increased in the last decade. However, of the available studies, few have explored the long-term effects of MPs on fish growth and reproduction and have resorted to MPs in the form of μm-sized beads/microspheres. In this study, 6-10 day-old post-hatch medaka (Oryzias latipes) fish were exposed to 50 (i.e. 1X) and 500 (i.e. 10X) μg of heterogeneously sized and irregularly shaped virgin polystyrene (PS) MP particles (200-μm range)/L for 150 days. These concentrations corresponded to respective daily mean values of 247 and 3087 particles/L administered through the diet. The PS MPs dietary exposure resulted in body burdens of 114 and 440 particles/g fish on day 50, and of 78 and 173 particles/g fish on day 100 since the respective exposures to the 1X and the 10X treatments started. The biometric analyses found no incidence of PS MPs ingestion on overall fish growth and development. The histological survey in the 10X group did not reveal alterations in gills or in the digestive tract. Mild alterations in other organs were seen and included increased fluid material in the peritoneal cavity, glomerular and tubular alterations in kidneys, and differences in the diameter of the thyroid follicles and thickness of the follicular epithelial cells. The initial days of the reproductive phase revealed MP-related differences in the number of gravid females, fecundity, and fertilization rates. Overall, these values reverted to normal rates throughout the succeeding days. No significant effects of PS MPs exposure were evidenced on offspring success. The 150-day PS MPs dietary exposure used in this study provided clues of histological effects and a reproduction delay. However, it did not seem to compromise overall growth/thriving and the ongoing reproduction.
Show more [+] Less [-]Warming, temperature fluctuations and thermal evolution change the effects of microplastics at an environmentally relevant concentration Full text
2022
Chang, Mengjie | Zhang, Chao | Li, Mingyang | Dong, Junyu | Li, Changchao | Liu, Jian | Verheyen, Julie | Stoks, Robby
Microplastics are sometimes considered not harmful at environmentally relevant concentrations. Yet, such studies were conducted under standard thermal conditions and thereby ignored the impacts of higher mean temperatures (MT), and especially daily temperature fluctuations (DTF) under global warming. Moreover, an evolutionary perspective may further benefit the future risk assessment of microplastics under global warming. Here, we investigated the effects of two generations of exposure to an environmentally relevant concentration of polystyrene microplastics (5 μg L⁻¹) under six thermal conditions (2 MT × 3 DTF) on the life history, physiology, and behaviour of Daphnia magna. To assess the impact of thermal evolution we thereby compared Daphnia populations from high and low latitudes. At the standard ecotoxic thermal conditions (constant 20 °C) microplastics almost had no effect except for a slight reduction of the heartbeat rate. Yet, at the challenging thermal conditions (higher MT and/or DTF), microplastics affected each tested variable and caused an earlier maturation, a higher fecundity and intrinsic growth rate, a decreased heartbeat rate, and an increased swimming speed. These effects may be partly explained by hormesis and/or an adaptive response to stress in Daphnia. Moreover, exposure to microplastics at the higher mean temperature increased the fecundity and intrinsic growth rate of cold-adapted high-latitude Daphnia, but not of the warm-adapted low-latitude Daphnia, suggesting that thermal evolution in high-latitude Daphnia may buffer the effects of microplastics under future warming. Our results highlight the critical importance of DTF and thermal evolution for a more realistic risk assessment of microplastics under global warming.
Show more [+] Less [-]Microplastics reduce net population growth and fecal pellet sinking rates for the marine copepod, Acartia tonsa Full text
2021
Shore, Emily A. | deMayo, James A. | Pespeni, Melissa H.
Microplastics (<5 mm) are ubiquitous in the global environment and are increasingly recognized as a biological hazard, particularly in the oceans. Zooplankton, at the base of the marine food web, have been known to consume microplastics. However, we know little about the impacts of microplastics across life history stages and on carbon settling. Here, we investigated the effects of ingestion of neutrally buoyant polystyrene beads (6.68 μm) by the copepod Acartia tonsa on (1) growth and survival across life history stages, (2) fecundity and egg quality, (3) and fecal characteristics. We found that microplastic exposure reduced body length and survival for nauplii and resulted in smaller eggs when copepods were exposed during oogenesis. Combining these life history impacts, our models estimate a 15% decrease in population growth leading to a projected 30-fold decrease in abundance over 1 year or 20 generations with microplastic exposure. In addition, microplastic-contaminated fecal pellets were 2.29-fold smaller and sinking rates were calculated to be 1.76-fold slower, resulting in an estimated 4.03-fold reduction in fecal volume settling to the benthos per day. Taken together, declines in population sizes and fecal sinking rates suggest that microplastic consumption by zooplankton could have cascading ecosystem impacts via reduced trophic energy transfer and slower carbon settling.
Show more [+] Less [-]Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis Full text
2021
Wang, Zhenglu | Dai, Shuiping | Wang, Jinze | Du, Wei | Zhu, Lin
Evidence about the adverse effects of methamphetamine (METH) on invertebrates is scarce. Hence, C. elegans, a representative invertebrate model, was exposed to METH at environmental levels to estimate chronic and transgenerational toxicity. The results of chronic exposure were integrated into an underlying toxicity framework of METH in invertebrates (e.g., benthos) at environmentally relevant concentrations. The induction of cellular oxidative damage-induced apoptosis and fluctuation of ecologically important traits (i.e., feeding and locomotion) might be attributed by the activation of the longevity regulating pathway regulated by DAF-16/FOXO, and detoxification by CYP family enzymes. The adverse effects to the organism level included impaired viability and decreased fecundity. The results from transgenerational exposure elucidated the cumulative METH-induced damage in invertebrates. Finally, a new risk assessment method named toxicity indicator sensitivity distribution (TISD) analysis was proposed by combining multiple toxicity indicator test data (ECₓ) to derive the hazardous concentration for 10% indicators (C₁₀) of one species. The risk quotient (RQ) values calculated by measured environmental concentrations and C₁₀ in southern China, southeastern Australia, and the western US crossed the alarm line (RQ = 5), suggesting a need for long-term monitoring.
Show more [+] Less [-]Sublethal effects of DBE-DBCH diastereomers on physiology, behavior, and gene expression of Daphnia magna Full text
2021
Seyoum, Asmerom | Kharlyngdoh, Joubert Banjop | Paylar, Berkay | Olsson, Per-Erik
1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH) is a brominated flame retardant used in commercial and industrial applications. The use of DBE-DBCH containing products has resulted in an increased release into the environment. However, limited information is available on the long-term effects of DBE-DBCH and its effects in aquatic invertebrates. Thus, the present study was aimed at determining how DBE-DBCH diastereomers (αβ and γδ) affects aquatic invertebrates using Daphnia magna as a model organism. Survival, reproduction, feeding, swimming behavior and toxicogenomic responses to environmental relevant concentrations of DBE-DBCH were analyzed. Chronic exposure to DBE-DBCH resulted in decreased lifespan, and reduced fecundity. Expression of genes involved in reproductive processes, vtg1 and jhe, were also inhibited. DBE-DBCH also induced hypoxia by inhibiting the transcription of genes involved in heme biosynthesis and oxygen transport. Furthermore, DBE-DBCH also inhibited feeding resulting in emptiness of the alimentary canal. Increased expression of the stress response biomarkers was observed following DBE-DBCH exposure. In addition, DBE-DBCH diastereomers also altered the swimming behavior of Daphnia magna. The present study demonstrates that DBE-DBCH cause multiple deleterious effects on Daphnia magna, including effects on reproduction and hormonal systems. These endocrine disrupting effects are in agreement with effects observed on vertebrates. Furthermore, as is the case in vertebrates, DBE-DBCH γδ exerted stronger effects than DBE-DBCH αβ on Daphnia magna. This indicate that DBE-DBCH γδ has properties making it more toxic to all so far studied animals than DBE-DBCH αβ.
Show more [+] Less [-]Antidepressant exposure reduces body size, increases fecundity and alters social behavior in the short-lived killifish Nothobranchius furzeri Full text
2020
Thoré, Eli S.J. | Philippe, Charlotte | Brendonck, Luc | Pinceel, Tom
Social and mating behavior are fundamental fitness determinants in fish. Although fish are increasingly exposed to pharmaceutical compounds that may alter expression of such behavior, potential effects are understudied. Here, we examine the impact of lifelong exposure to two concentrations (0.7 and 5.3 μg/L) of the antidepressant fluoxetine on fecundity and social behavior (i.e. sociability and male-male aggression) in the turquoise killifish, Nothobranchius furzeri. When exposed to the highest concentration of fluoxetine (5.3 μg/L), fish were smaller at maturation but they more frequently engaged in mating. In addition, in both fluoxetine treatments females roughly doubled their overall fecundity while egg fertilization rates were the same for exposed and unexposed fish. Although aggression of male fish was not impacted by fluoxetine exposure, exposed male fish (5.3 μg/L) spent more time in the proximity of a group of conspecifics, which implies an increased sociability in these individuals. Overall, the results of this study indicate that exposure to fluoxetine may result in disrupted male sociability, increased mating frequency and an increased reproductive output in fish populations.
Show more [+] Less [-]Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod) Full text
2020
Yu, Juan | Tian, Ji-Yuan | Xu, Rui | Zhang, Zheng-Yu | Yang, Gui-Peng | Wang, Xue-Dan | Lai, Jing-Guang | Chen, Rong
The effects of microplastics pollution on the marine ecosystem have aroused attention. Copepod grazing stimulates dimethylsulfide (DMS) release from dimethylsulfoniopropionate (DMSP) in phytoplankton, but the effect of microplastics exposure on DMS and DMSP production during copepod feeding has not yet been revealed. Here, we investigated the effects of polyethylene (PE) and polyamide-nylon 6 (PA 6) microplastics on ecotoxicity and DMS/DMSP production in the copepod Tigriopus japonicus. The microplastics had detrimental effects on feeding, egestion, reproduction, survival, and DMS and DMSP production in T. japonicus and presented significant dose-response relationships. The 24 h-EC50 for ingestion rates (IRs) of female T. japonicus exposed to PE and PA 6 were 57.6 and 58.9 mg L⁻¹, respectively. In comparison, the body size of the copepods was not significantly affected by the microplastics during one generation of culture. Ingesting fluorescently labeled microplastics confirmed that microplastics were ingested by T. japonicus and adhered to the organs of the body surface. T. japonicus grazing promoted DMS release originating from degradation of DMSP in algal cells. Grazing-activated DMS production decreased because of reduced IR in the presence of microplastics. These results provide new insight into the biogeochemical cycle of sulfur during feeding in copepods exposed to microplastics.
Show more [+] Less [-]Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma) Full text
2019
Wang, Jun | Li, Yuejiao | Lü, Lin | Zheng, Mingyi | Zhang, Xiaona | Tian, Hua | Wang, Wei | Ru, Shaoguo
The ubiquity of microplastics in the world's ocean has aroused great concern. However, the ecological effects of microplastics at environmentally realistic concentrations are unclear. Here we showed that exposure of marine medaka (Oryzias melastigma) to environmentally relevant concentrations of 10 μm polystyrene microplastics for 60 days not only led to microplastic accumulation in the gill, intestine, and liver, but also caused oxidative stress and histological changes. Moreover, 2, 20, and 200 μg/L microplastics delayed gonad maturation and decreased the fecundity of female fish. Alterations of the hypothalamus-pituitary-gonadal (HPG) axis were investigated to reveal the underlying mechanisms, and gene transcription analysis showed that microplastic exposure had significantly negative regulatory effects in female HPG axis. Transcription of genes involved in the steroidogenesis pathway in females were also downregulated. This disruption resulted in decreased concentrations of 17β-estradiol (E₂) and testosterone (T) in female plasma. Furthermore, parental exposure to 20 μg/L microplastics postponed the incubation time and decreased the hatching rate, heart rate, and body length of the offspring. Overall, the present study demonstrated for the first time that environmentally relevant concentrations of microplastics had adverse effects on the reproduction of marine medaka and might pose a potential threat to marine fish populations.
Show more [+] Less [-]Ingestion of polyethylene microbeads affects the growth and reproduction of medaka, Oryzias latipes Full text
2019
Chisada, Shinichi | Yoshida, Masao | Karita, Kanae
Research using various species of wild and cultured fish has identified negative effects of short-term exposure to microbeads. Although wild animals might be contaminated with microbeads and/or other pharmaceuticals, data regarding the long-term effects remain limited. To clearly elucidate the effects of microbeads, studies of long-term exposure using animal models are necessary. Our aim was to elucidate the effects of microbeads alone on the growth and fecundity of medaka following long-term exposure (12 weeks). In experiment 1, fish groups (except controls) were temporarily exposed to polyethylene microbeads (10–63 μm diameter) a low dose of 0.065 microbeads-mg/L and high dose of 0.65 microbeads-mg/L. In experiment 2, see-through medaka and fluorescent polyethylene microbeads (10–45 μm diameter) were used to estimate the retention time of ingested microbeads in the digestive tract, which was 4–9 days. The low dose of microbeads did not affect growth but did decrease the number of eggs and the hatching rate. The high dose decreased growth, the number of eggs, and hatching rate. Growth differences were recognized for the first time at 7 weeks, and differences in the number of eggs at 12 weeks. Thus, long-term tests using medaka indicated that microbeads per se exhibit growth inhibition and reproductive toxicity. These effects could be associated with nutritional factors resulting from the long retention time of microbeads in the digestive tract. We also determined the dose that affects only fecundity. This suggests that normal growth of medaka in the wild does not mean the environment is free from microbead contamination. We are thus attempting to identify new biological indexes for monitoring the status of microbead contamination using our system.
Show more [+] Less [-]