Refine search
Results 1-10 of 20
Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions
2022
Yang, Yu-Miao | Naseer, Minha | Zhu, Ying | Zhu, Shuang-Guo | Wang, Song | Wang, Bao-Zhong | Wang, Jing | Zhu, Hao | Wang, Wei | Tao, Hong-Yan | Xiong, You-Cai
Nanoscale zero-valent iron (nZVI) might generate positive and negative effects on plant growth, since it acts as either hazardous or growth-promotion role. It is still unclear whether such dual roles can be mediated by arbuscular mycorrhizal fungi (AMF) in plant-AMF symbiosis. We first identified that in 1.5 g kg⁻¹ nZVI (≤1.5 g kg⁻¹ positively), maize biomass was increased by 15.83%; yet in 2.0 g kg⁻¹ nZVI, it turned to be declined by 6.83%, relative to non-nZVI condition (CK, p < 0.05), showing a negative effect. Interestingly, the inoculation of AMF massively improved biomass by 45.18% in 1.5 g kg⁻¹ nZVI, and relieved the growth inhibition by 2.0 g kg⁻¹ nZVI. The event of water use efficiency followed similar trend as that of biomass. We found that proper concentration of nZVI can positively interact with rhizosphere AMF carrier, enabling more plant photosynthetic carbon to be remobilized to mycorrhiza. The scanning of transmission electron microscopy showed that excessive nZVI can infiltrate into root cortical cells and disrupt cellular homeostasis mechanism, significantly increasing iron content in roots by 76.01% (p < 0.05). Simultaneously, the images of scanning electron microscopy showed that nZVI were attached on root surface to form an insoluble iron ion (Fe³⁺) layer, hindering water absorption. However, they were efficiently immobilized and in situ intercepted by extraradical hyphae in mycorrhizal-nZVI symbiosis, lowering iron translocation efficiency by 6.07% (p < 0.05). Herein, the optimized structure remarkably diminished aperture blockage at root surface and improved root activities by 30.06% (p < 0.05). Particularly, next-generation sequencing demonstrated that appropriate amount of nZVI promoted the colonization and development of Funneliformis mosseae as dominant species in rhizosphere, confirming the positive interaction between AMF and nZVI, and its regulatory mechanism. Therefore, dual effects of nZVI can be actively mediated by AMF via rhizosphere interactions. The findings provided new insights into the safe and efficient application of nanomaterials in agriculture.
Show more [+] Less [-]Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought
2018
Liu, Chunguang | Dai, Zheng | Cui, Mengying | Lu, Wenkai | Sun, Hongwen
To investigate the effect of arbuscular mycorrhizal fungi (AMF) on boron (B) toxicity in plants under the combined stresses of salt and drought, Puccinellia tenuiflora was grown in the soil with the inoculation of Funneliformis mosseae and Claroideoglomus etunicatum. After three weeks of treatment, the plants were harvested to determine mycorrhizal colonization rates, plant biomass, as well as tissue B, phosphorus, sodium, and potassium concentrations. The results show that the combined stresses reduced mycorrhizal colonization. Mycorrhizal inoculation significantly increased plant biomass while reduced shoot B concentrations. Mycorrhizal inoculation also slightly increased shoot phosphorus and potassium concentrations, and reduced shoot sodium concentrations. F. mosseae and C. etunicatum were able to alleviate the combined stresses of B, salt, and drought. The two fungal species and their combination showed no significant difference in the alleviation of B toxicity. It is inferred that AMF is able to alleviate B toxicity in P. tenuiflora by increasing biomass and reducing tissue B concentrations. The increase in plant phosphorus and potassium, as well as the decrease in sodium accumulation that induced by AMF, can help plant tolerate the combined stresses of salt and drought. Our findings suggest that F. mosseae and C. etunicatum are potential candidates for facilitating the phytoremediation of B-contaminated soils with salt and drought stress.
Show more [+] Less [-]The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements
2004
Gonzalez-Chavez, M.C. | Carrillo-Gonzalez, R. | Wright, S.F. | Nichols, K.A.
Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 μM of Cu. Although no differences between isolates were detected, mean values for the 20 μM Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils.
Show more [+] Less [-]Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi
1999
Entry, J.A. | Watrud, L.S. | Reeves, M. (USDA Agricultural Research Service, Northwest Irrigation and Soil Research Laboratory, 3793 N 3600 E, Kimberly, ID 83341 (USA))
The effects of biochar and AM fungi (Funneliformis mosseae) on bioavailability Cd in a highly contaminated acid soil with different soil phosphorus supplies
2020
Due to the increase of cadmium (Cd)-contaminated land area worldwide, effective measures should be taken to minimize the Cd bioavailability in crops. A study was performed to explore the effectiveness of biochar pyrolyzed from rice straw at 400 °C alone or combined with AM fungi (Funneliformis mosseae) on the corn growth and Cd uptake in corn in Cd-contaminated soil with different levels of phosphorus supplies. The results showed that biochar significantly reduced 66% and 38% of Cd uptake in shoot and root respectively (P < 0.001) attributed to the increase of soil pH and dissolved organic matter. In contrast, AM fungi inoculation of corn plants had little effect on Cd bioavailability due to the AM was suppressed by the highly contaminated acid soil (31.76 mg/kg), and had neither synergistic effect with biochar on decreasing the Cd bioavailability with high or low phosphorus supplies. This study demonstrated that biochar application could be a promising method to immobilize Cd in the contaminated soil to ensure the safety of agro-product while high Cd-contaminated soil would suppress the growth of mycorrhizae, so this remains an open question to be further studied.
Show more [+] Less [-]Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus
2018
Wang, Fayuan | Jing, Xinxin | Adams, Catharine A. | Shi, Zhaoyong | Sun, Yuhuan
ZnO nanoparticles (NPs) are applied in a wide variety of applications and frequently accumulate in the environment, thus posing risks to the environment and human health. Arbuscular mycorrhizal (AM) fungi (AMF) associate symbiotically with roots of most higher plants, helping their host plants acquire phosphorus (P). AMF can reduce the toxicity of ZnO NPs, but the benefits of AMF to host plants highly vary with soil available P. We hypothesize that organic P may help AMF to alleviate ZnO NP phytotoxicity. Here, we investigated the effects of inoculation with Funneliformis mosseae on plant growth and Zn accumulation, using maize grown in soil-sand mix substrates spiked with ZnO NPs (0 or 500 mg kg⁻¹) under different organic P supply levels (0, 20, or 50 mg kg⁻¹). The results showed addition of ZnO NPs inhibited root colonization rate, increased the shoot/root P concentration ratio, and led to significant Zn accumulation in soil and plants. As predicted, AM effects on maize plants all varied with P supply levels, both with or without ZnO NP additions. Organic P interacted synergistically with AMF to promote plant growth and acquisition of P, N, K, Fe, and Cu. AM inoculation reduced the bioavailable Zn released from ZnO NPs and decreased the concentrations and translocation of Zn to maize shoots. In conclusion, ZnO NPs caused excess Zn in soil and plants, posing potential environmental risks. However, our present results first demonstrate that organic P exhibited similar positive effects to AMF and interacted synergistically with AMF to improve plant growth and nutrition, and to decrease Zn accumulation and partitioning in plants, and thus helped diminish the adverse effects induced by ZnO NPs.
Show more [+] Less [-]Heavy metal domestication enhances beneficial effects of arbuscular mycorrhizal fungi on lead (Pb) phytoremediation efficiency of Bidens parviflora through improving plant growth and root Pb accumulation
2022
Atwill, Yurong Y. | Huang, Beitong | Xu, Jiazheng | Li, Zhenxin | Tang, Zhanhui | Wu, Xuefeng
Native arbuscular mycorrhizal fungi (AMF) generally provide more effective assistance for phytoremediation to remove heavy metal (HM) from polluted soils than non-native AMF. Nevertheless, it is a time-consuming work to isolate, identify, and propagate AMF inoculum for practical application. This study aims to explore an alternative method to improve the phytoremediation efficiency of Bidens parviflora using domesticated AMF under HM stress condition for a certain period of time. Our results showed that Funneliformis mosseae inoculation alleviated oxidative damage to plant membranes by enhancing activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Furthermore, mycorrhizal plants had higher chlorophyll concentration, photosynthesis efficiency, and root Pb content to protect the aerial parts from damage. These protective mechanisms were found to be more efficient in domesticated AMF inoculation compared with non-domesticated AMF inoculation. Overall, this study suggests that F. mosseae domesticated for 12 months could greatly enhance plant root Pb accumulation and plant growth mainly through strengthening antioxidant defenses as well as the photosynthesis efficiency under Pb stress conditions. Plants inoculated with pre-domesticated AMF provided a promising new strategy to enhance phytoremediation of Pb-contaminated soils.
Show more [+] Less [-]Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining–degraded soil by increasing photosynthetic carbon assimilation and allocation to maize
2022
Bi, Yinli | Wang, Xiao | Cai, Yun | Christie, Peter
A three-compartment culture system was used to study the mechanism by which the AM fungus Funneliformis mosseae influences host plant growth and soil organic carbon (SOC) content in a northwest China coal mining area. A ¹³CO₂ pulse tracing technique was used to trace the allocation of maize photosynthetic C in shoots, roots, AM fungus, and soil. Carbon accumulation and allocation in mycorrhizal (inoculated with Funneliformis mosseae) and non-mycorrhizal treatments were detected. AM fungal inoculation significantly increased the ¹³C concentration and content in both above- and below-ground plant parts and also significantly enhanced anti-aging ability by increasing soluble sugars and catalase activity (CAT) in maize leaves while reducing foliar malondialdehyde content (MDA) and leaf temperature and promoted plant growth. AM fungi also increased P uptake to promote maize growth. Soil organic carbon (SOC), glomalin, microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly after inoculation. A mutually beneficial system was established involving maize, the AM fungus and the microbiome, and the AM fungus became an important regulator of C flux between the above- and below-ground parts of the system. Inoculation with the AM fungus promoted plant growth, C fixation and allocation belowground to enhance soil quality. A positive above-belowground feedback appeared to be established.
Show more [+] Less [-]Combined effect of putrescine and mycorrhizal fungi in phytoremediation of Lallemantia iberica in Pb-contaminated soils
2021
As soil contamination with heavy metals is increasing and polyamines have roles in the growth of mycorrhiza and plants, it is important to study phytoremediation, growth, tolerance, and mycorrhization in Lallemantia iberica as a multi-purpose plant, by the application of putrescine along with mycorrhiza in Pb-contaminated soils. For this purpose, the study was performed in a factorial arrangement with Pb (0, 300, 600, and 900 mg Pb/kg soil), mycorrhiza (non-inoculation, Funneliformis mosseae (Fm), and Rhizophagus intraradices (Ri)), and putrescine (0, 0.5, and 1 mM) in a greenhouse. Results showed that antioxidant activities, plant Pb, and mycorrhizal features enhanced, while transfer factor (TF), biomass, and tolerance decreased under Pb levels. Mycorrhiza improved growth, greenness, defense, and tolerance and reduced TF, Pb, and H₂O₂ content under Pb stress. Putrescine (0.5 mM) increased catalase activity, biomass, and colonization and reduced Pb content and TF under Pb levels. Combination of 0.5 mM putrescine with Fm increased shoot biomass (13%), peroxidase (17.2%), root P (7.5%), shoot tolerance (14.4%), colonization (5.1%), and hyphal width (5.5%) and decreased malondialdehyde (20.5%) and shoot Pb content (28.1%). Putrescine (1 mM) had negative effects on all traits in combination with Ri but not with Fm. Combination of putrescine and Fm showed more efficiency in decreasing Pb content in L. iberica and was effective in phytostabilization. It is generally concluded that 0.5 mM putrescine was the beneficial concentration in combination with mycorrhiza, Pb stress, and single use to improve plant performance, and Fm was a useful species for improving the growth and tolerance of L. iberica under Pb levels.
Show more [+] Less [-]Effect of Superphosphate and Arbuscular Mycorrhizal Fungus Glomus mosseae on Phosphorus and Arsenic Uptake in Lentil (Lens culinaris L.)
2011
Ahmed, Fazel R Sadeque | Alexander, Ian J. | Mwinyihija, Mwinyikione | Killham, Kenneth
Arsenic (As)-contaminated irrigation water is responsible for high As levels in soils and crops in many parts of the world, particularly in the Bengal Delta, Bangladesh and West Bengal, India. While arbuscular mycorrhizal (AM) fungi markedly improve phosphorus (P) uptake, they can also alleviate metal toxicity. In this study, the effects of superphosphate and inoculation with the AM fungus Glomus mosseae on P and As uptake of lentil were investigated. Plant height, shoot dry weight, shoot/root P concentration, and shoot P content increased due to mycorrhizal inoculation. However, As concentration in roots/shoots and root As content were reduced, plant height, shoot dry weight, shoot/root P concentration/content, and root As concentration and content increased due to superphosphate application. Root P concentration decreased with increasing As concentration. It was apparent that As concentration and content in shoots/roots increased with increasing As concentration in irrigation water. Superphosphate interaction with G. mosseae reduced the role of mycorrhizal infection in terms of enhancing P nutrition and reducing uptake of potentially toxic As into plant parts. The role and relationship of mycorrhizal in respect of P nutrition and As remediation efficiency in plant parts was established. In conclusion, it was worth alluding to that lentil with AM fungal inoculation can reduce As uptake and improve P nutrition. However, in retrospect superphosphate increased P and As uptake and decreased the role of the mycorrhizal association. This resulted in stimulating increased P uptake while decreasing As uptake in lentil.
Show more [+] Less [-]