Refine search
Results 1-3 of 3
Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): Molecular, biochemical, and histopathological alterations
2016
Karamī, ʻAlī | Romano, Nicholas | Hamzah, Hazilawati | Simpson, Stuart L. | Yap, Chee Kong
Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
Show more [+] Less [-]Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence
2022
Ding, Ting | Yan, Wei | Zhou, Ting | Shen, Wei | Wang, Tian | Li, Milu | Zhou, Su | Wu, Meng | Dai, Jun | Huang, Kecheng | Zhang, Jinjin | Chang, Jiang | Wang, Shixuan
Endocrine-disrupting chemicals (EDCs) are ubiquitous in daily life, but their harmful effects on the human body have not been fully explored. Recent studies have shown that EDCs exposure could lead to infertility, menstrual disorder and menopause, resulting in subsequent effects on female health. Therefore, it is of great significance to clarify and summarize the impacts of EDCs on ovarian aging for explaining the etiology of ovarian aging and maintaining female reproductive health. Here in this review, we focused on the impacts of ten typical environmental contaminants on the progression of ovarian aging during adult exposure, including epidemiological data in humans and experimental models in rodents, with their clinical phenotypes and underlying mechanisms. We found that both persistent (polychlorinated biphenyls, perfluoroalkyl and polyfluoroalkyl substances) and non-persistent (phthalates) EDCs exposure could increase an overall risk of ovarian aging, leading to the diminish of ovarian reserve, decline of fertility or fecundity, irregularity of the menstrual cycle and an earlier age at menopause, and/or premature ovarian insufficiency/failure in epidemiological studies. Among these, the loss of follicles can also be validated in experimental studies of some EDCs, such as BPA, phthalates, parabens and PCBs. The underlying mechanisms may involve the impaired ovarian follicular development by altering receptor-mediated pro-apoptotic pathways, inducing signal transduction and cell cycle arrest and epigenetic modification. However, there were inconsistent results in the impacts on fertility/fecundity, menstrual/estrous cycle and hormone changes response to different EDCs, and differences between human and animal studies. Our review summarizes the current state of knowledge on ovarian disrupters, highlights their risks to ovarian aging and identifies knowledge gaps in humans and animals. We therefore propose that females adopt healthy lifestyle changes to minimize their exposure to both persistent and non-persistent chemicals, that have the potential damage to their reproductive function.
Show more [+] Less [-]The anti-estrogenicity of chronic exposure to semicarbazide in female Japanese flounders (Paralichthys olivaceus), and its potential mechanisms
2018
Yue, Zonghao | Yu, Miao | Zhao, Haifeng | Wang, Jun | Zhang, Xiaona | Tian, Hua | Wang, Wei | Ru, Shaoguo
This study investigated the anti-estrogenic effects of chronic exposure to a new marine pollutant, semicarbazide (SMC; 1, 10, and 100μg/L), in female Paralichthys olivaceus, as well as the associated mechanism. After 130days of exposure, plasma 17β-estradiol and testosterone concentrations, and hepatic estrogen receptors, vitellogenin, and choriogenin mRNA levels decreased significantly in SMC-exposed groups. Moreover, down-regulation of genes in the hypothalamic-pituitary-gonadal axis, including gonadotropin-releasing hormone, gonadotropic hormones and their receptors, the steroidogenic acute regulatory protein, 17α-hydroxylase, 17β-hydroxysteroid dehydrogenase, and cytochrome P450 19A, was observed after SMC exposure. Furthermore, the kisspeptin/g protein-coupled receptor 54 (kiss/gpr54) system and gamma-aminobutyric acid-ergic (GABAergic) system were also affected by SMC: SMC significantly down-regulated mRNA expression of kiss2, gpr54, and the GABA synthesis enzyme gad67. Our results demonstrated for the first time that environmentally relevant concentrations of SMC exerted anti-estrogenicity in female flounders, providing theoretical support for ecological risk assessments of SMC in marine environments.
Show more [+] Less [-]