Refine search
Results 1-10 of 352
Effect of microbial community structures and metabolite profile on greenhouse gas emissions in rice varieties Full text
2022
Ding, Huina | Liu, Tianqi | Hu, Quanyi | Liu, Min | Cai, Mingli | Jiang, Yang | Cao, Cougui
Rice paddy fields are major sources of atmospheric methane (CH₄) and nitrous oxide (N₂O). Rice variety is an important factor affecting CH₄ and N₂O emissions. However, the interactive effects of rice metabolites and microorganisms on CH₄ and N₂O emissions in paddy fields are not clearly understood. In this study, a high greenhouse gas-emitting cultivar (YL 6) and a low greenhouse gas-emitting cultivar (YY 1540) were used as experimental materials. Metabolomics was used to examine the roots, root exudates, and bulk soil metabolites. High-throughput sequencing was used to determine the microbial community composition. YY 1540 had more secondary metabolites (flavonoids and isoflavonoids) in root exudates than YL 6. It was enriched with the uncultured members of the families Gemmatimonadanceae and Rhizobiales_Incertae_Sedis in bulk soil, and genera Burkholderia-Caballeronia-Paraburkholderia, Magnetospirillum, Aeromonas, and Anaeromyxobacter in roots, contributing to increased expression of pmoA and nosZ genes and reducing CH₄ and N₂O emissions. YL 6 roots and root exudates contained higher contents of carbohydrates [e.g., 6-O- acetylarbutin and 2-(3- hydroxyphenyl) ethanol 1′-glucoside] than those of YY 1540. They were enriched with genera RBG-16-58-14 in bulk soil and Exiguobacterium, and uncultured member of the Kineosporiaceae family in roots, which contributed to increased expression of mcrA, ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nirS, and nirK genes and greenhouse gas emissions. In general, these results established a link between metabolites, microorganisms, microbial functional genes, and greenhouse gas emissions. The metabolites of root exudates and roots regulated CH₄ and N₂O emissions by influencing the microbial community composition in bulk soil and roots.
Show more [+] Less [-]Influencing factors and prediction of arsenic concentration in Pteris vittata: A combination of geodetector and empirical models Full text
2022
Zeng, Weibin | Wan, Xiaoming | Lei, Mei | Gu, Gaoquan | Chen, Tongbin
Phytoextraction using hyperaccumulator, Pteris vittata, to extract arsenic (As) from soil has been applied to large areas to achieve an As removal rate of 18% per year. However, remarkable difference among different studies and field practices has led to difficulties in the standardization of phytoextraction technology. In this study, data on As concentration in P. vittata and related environmental conditions were collected through literature search. A conceptual framework was proposed to guide the improvement of phytoextraction efficiency in the field. The following influencing factors of As concentration in this hyperaccumulator were identified: total As concentration in soil, soil available As, organic matter in soil, total potassium (K) concentration in soil, and annual rainfall. The geodetection results show that the main factors that affect As concentration in P. vittata include soil organic matter (q = 0.75), soil available As (q = 0.67), total K (q = 0.54), and rainfall (q = 0.42). The predictive models of As concentration in P. vittata were established separately for greenhouse and field conditions through multivariate linear stepwise regression method. Under greenhouse condition, soil available As was the most important influencing factor and could explain 41.4% of As concentration in P. vittata. Two dominant factors were detected in the field: soil available As concentration and average annual rainfall. The combination of these two factors gave better prediction results with R² = 0.762. The establishment of the model might help predict phytoextraction efficiency and contribute to technological standardization. The strategies that were used to promote As removal from soil by P. vittata were summarized and analyzed. Intercropping with suitable plants or a combination of different measures (e.g., phosphate fertilizer and water retention) was recommended in practice to increase As concentration in P. vittata.
Show more [+] Less [-]Fuel consumption and air emissions in one of the world’s largest commercial fisheries Full text
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Lamboy, Nathalie Bodin
The little information available on fuel consumption and emissions by high seas tuna fisheries indicates that the global tuna fleet may have consumed about 2.5 Mt of fuel in 2009, resulting in the production of about 9 Mt of CO₂-equivalent greenhouse gases (GHGs), i.e., about 4.5–5% of the global fishing fleet emissions. We developed a model of annual fuel consumption for the large-scale purse seiners operating in the western Indian Ocean as a function of fishing effort, strategy, and vessel characteristics based on an original and unique data set of more than 4300 bunkering operations that spanned the period 2013–2019. We used the model to estimate the total fuel consumption and associated GHG and SO₂ emissions of the Indian Ocean purse seine fishery between 1981 and 2019. Our results showed that the energetic performance of this fishery was characterized by strong interannual variability over the last four decades. This resulted from a combination of variations in tuna abundance but also changes in catchability and fishing strategy. In recent years, the increased targeting of schools associated with fish aggregating devices in response to market incentives combined with the IOTC management measure implemented to rebuild the stock of yellowfin tuna has strongly modified the productivity and spatio-temporal patterns of purse seine fishing. This had effects on fuel consumption and air pollutant emissions. Over the period 2015 to 2019, the purse seine fishery, including its support vessel component, annually consumed about 160,000 t of fuel and emitted 590,000 t of CO2-eq GHG. Furthermore, our results showed that air pollutant emissions can be significantly reduced when limits in fuel composition are imposed. In 2015, SO₂ air pollution exceeded 1500 t, but successive implementation of sulphur limits in the Indian Ocean purse seine fishery in 2016 and 2018 have almost eliminated this pollution. Our findings highlight the need for a routine monitoring of fuel consumption with standardized methods to better assess the determinants of fuel consumption in fisheries and the air pollutants they emit in the atmosphere.
Show more [+] Less [-]Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system Full text
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
Show more [+] Less [-]Water-washed hydrochar in rice paddy soil reduces N2O and CH4 emissions: A whole growth period investigation Full text
2021
Chen, Danyan | Zhou, Yibo | Xu, Cong | Lu, Xinyu | Liu, Yang | Yu, Shan | Feng, Yanfang
Hydrochar (HC), an environment-friendly material, enhances soil carbon sequestration and mitigate greenhouse gases (GHGs) emissions in croplands. In this study, the water-washed HC (WW-HC) was applied to paddy soil to investigate effects on nitrous oxide (N₂O) and methane (CH₄) emissions during rice growth period. Four treatments, namely control (without N fertilizer and WW-HC), N fertilizer (WW-HC00), N fertilizer with 0.5 wt% WW-HC (WW-HC05) and N fertilizer with 1.5 wt% WW-HC (WW-HC15), were established. Results showed the WW-HC addition reduced N₂O and CH₄ emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) during the growing season. Moreover, the WW-HC application reduced N₂O cumulative emission (P < 0.05) (by 28.6% and 23.8% for WW-HC05 and WW-HC15, respectively). It was mainly due to the reduced ratio of (nirK + nirS) to nosZ under WW-HC15 (P < 0.05). Compared with WW-HC00, the WW-HC05 reduced CH₄ cumulative emissions by 14.8%, while the WW-HC15 increased by 9.7%. This might be ascribed to the significantly reduced expression of the methanogenic mcrA gene and ratio of mcrA to pmoA by WW-HC (P < 0.05). The WW-HC05 amendment decreased GWP and GHGI by 18.6% and 32.5%, respectively. Furthermore, the WW-HC application greatly improved nitrogen use efficiency by 116–145% compared with the control. Our study indicates the WW-HC application is a promising GHGs mitigation practice in paddy fields.
Show more [+] Less [-]How far climatic parameters associated with air quality induced risk state (AQiRS) during COVID-19 persuaded lockdown in India Full text
2021
Mahato, Susanta | Talukdar, Swapan | Pal, Swades | Debanshi, Sandipta
Global temperature rises in response to accumulating greenhouse gases is a well-debated issue in the present time. Historical records show that greenhouse gases positively influence temperature. Lockdown incident has brought an opportunity to justify the relation between greenhouse gas centric air pollutants and climatic variables considering a concise period. The present work has intended to explore the trend of air quality parameters, and air quality induced risk state since pre to during the lockdown period in reference to India and justifies the influence of pollutant parameters on climatic variables. Results showed that after implementation of lockdown, about 70% area experienced air quality improvement during the lockdown. The hazardous area was reduced from 7.52% to 5.17%. The spatial association between air quality components and climatic variables were not found very strong in all the cases. Still, statistically, a significant relation was observed in the case of surface pressure and moisture. From this, it can be stated that pollutant components can control the climatic components. This study recommends that pollution source management could be a partially good step for bringing climatic resilience of a region.
Show more [+] Less [-]Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies Full text
2021
Growing applications of nanoagrichemicals have resulted in their increasing accumulation in agricultural soils, which could modify soil properties and affect soil health. A greenhouse pot trial was conducted to determine the effects of three metallic nanoagrichemicals on several fundamental chemical properties of a rice paddy soil, including zinc oxide nanoparticles (ZnO NPs) and copper oxide nanoparticles (CuO NPs) at 100 mg/kg, and silicon oxide nanoparticles (SiO₂ NPs) at 500 mg/kg, as well as their bulk and ionic counterparts. The investigated soil amendments displayed significant and distinctive impact on the examined soil chemical properties relevant to agricultural production, including soil pH, redox potential, soil organic carbon (SOC), cation exchange capacity (CEC), and plant available As. For example, all amendments increased the bulk soil pH at day 47 to some extent, but the increase was substantially higher for SiO₃²⁻ (37.7%) than other amendments (5.8%–13.7%). Soil Eh was elevated markedly at day 47 after the addition of soil amendments in both the bulk soil (45.9%–74.4%) and rice rhizosphere soil (20.3%–68.9%). CuO NPs and Cu²⁺ generally exhibited greater impact on soil chemical properties than other agrichemicals. Significantly different responses to soil amendments were observed between bulk and rhizosphere soils, suggesting the essential role of plants in affecting soil properties and their responses to environmental disturbance. Overall, our results confirmed that the tested amendments could have remarkable impacts on the fundamental chemical properties of rice paddy soils.
Show more [+] Less [-]Missed atmospheric organic phosphorus emitted by terrestrial plants, part 2: Experiment of volatile phosphorus Full text
2020
Li, Wei | Li, Bengang | Tao, Shu | Ciais, Philippe | Piao, Shilong | Shen, Guofeng | Peng, Shushi | Wang, Rong | Gasser, Thomas | Balkanski, Yves | Li, Laurent | Fu, Bo | Yin, Tianya | Li, Xinyue | An, Jie | Han, Yunman
The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH₃) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. ³¹P nuclear magnetic resonance tests (³¹P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1–2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.
Show more [+] Less [-]Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum Full text
2020
Gong, Wenwen | Jiang, Mengyun | Zhang, Tingting | Zhang, Wei | Liang, Gang | Li, Bingru | Hu, Bin | Han, Ping
Production of chrysanthemum (Dendranthema grandiflora) in greenhouses often requires intensive pesticide use, which raises serious concerns over food safety and human health. This study investigated uptake, translocation and residue dissipation of typical fungicides (metalaxyl-M and fludioxonil) and insecticides (cyantraniliprole and thiamethoxam) in greenhouse chrysanthemum when applied in soils. Chrysanthemum plants could absorb these pesticides from soils via roots to various degrees, and bioconcentration factors (BCFLS) were positively correlated with lipophilicity (log Kₒw) of pesticides. Highly lipophilic fludioxonil (log Kₒw = 4.12) had the greatest BCFLS (2.96 ± 0.41 g g⁻¹), whereas hydrophilic thiamethoxam (log Kₒw = −0.13) had the lowest (0.09 ± 0.03 g g⁻¹). Translocation factors (TF) from roots to shoots followed the order of TFₗₑₐf > TFₛₜₑₘ > TFfₗₒwₑᵣ. Metalaxyl-M and cyantraniliprole with medium lipophilicity (log Kₒw of 1.71 and 2.02, respectively) and hydrophilic thiamethoxam showed relatively strong translocation potentials with TF values in the range of 0.29–0.81, 0.36–2.74 and 0.30–1.03, respectively. Dissipation kinetics in chrysanthemum flowers followed the first-order with a half-life of 21.7, 5.5, 10.0 or 8.2 days for metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam, respectively. Final residues of these four pesticides, including clothianidin (a primary toxic metabolite of thiamethoxam), in all chrysanthemum flower samples were below the maximum residue limit (MRL) values 21 days after two soil applications each at the recommended dose (i.e., 3.2, 2.1, 4.3 and 4.3 kg ha⁻¹, respectively). However, when doubling the recommended dose, the metabolite clothianidin remained at concentrations greater than the MRL, despite that thiamethoxam concentration was lower than the MRL value. This study provided valuable insights on the uptake and residues of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam (including its metabolite clothianidin) in greenhouse chrysanthemum production, and could help better assess food safety risks of chrysanthemum contamination by parent pesticides and their metabolites.
Show more [+] Less [-]Swine slurry characteristics as affected by selected additives and disinfectants Full text
2020
Duerschner, Jon | Bartelt-Hunt, Shannon | Eskridge, Kent M. | Gilley, John E. | Li, Xu | Schmidt, Amy M. | Snow, Daniel D.
Current swine industry practice is to house animals in confinement facilities which capture and store feces and urine as slurry in pits below the production area. Additives and disinfectants may be introduced into the manure pits. This study was conducted to measure the effects of additives and disinfectants on temporal changes in swine slurry characteristics. Slurry from a commercial swine production facility in southeast Nebraska, USA was collected and transferred to 57 L reactors located within a greenhouse. Selected additives and disinfectants were added to the reactors and physical properties, chemical characteristics, and antibiotic concentrations were monitored for 40 days. Concentrations of dry matter (DM), total nitrogen (TN), phosphorus pentoxide (P₂O₅), calcium (Ca), magnesium (Mg), zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu) were significantly greater than the Control in each of the reactors containing additives. The reactors in which the additives MOC-7, More Than Manure®, Sludge Away, and Sulfi-Doxx were introduced had significantly greater values of chemical oxygen demand (COD), total volatile solids (TVS), total suspended solids (TSS), total solids (TS), dry matter (DM), TN, P₂O₅, Ca, Mg, Zn, Fe, Mn, Cu and chlortetracycline than the other additive treatments. Concentrations of TVS and TSS were significantly lower in the reactors containing Clorox® and Virkon™ than the other disinfectant treatments. The total dissolved solids (TDS) concentration of 26,500 mg L⁻¹ and pH value of 7.27 obtained for the reactors containing Tek-Trol were significantly greater than measurements obtained for the other treatments. Concentrations of chlortetracycline and tiamulin of 8840 and 28.8 ng g⁻¹, respectively, were significantly lower for the treatments containing Tek-Trol. The sodium (Na) concentration of 1070 mg L⁻¹ measured in the reactors containing Clorox® was significantly greater than values for the other disinfectant treatments. The introduction of selected additives and disinfectants may influence certain physical properties, chemical characteristics, and antibiotic concentrations of swine slurry.
Show more [+] Less [-]