Refine search
Results 1-6 of 6
Tolerance of Mentha crispa L. (garden mint) cultivated in cadmium-contaminated oxisol
2021
The tolerance of Mentha crispa L. (garden mint) cultivated in cadmium-contaminated oxisol for 120 days was analyzed using plant growth variables such as height, the number of leaves and shoots in different Cd exposure periods, as well as assessing the metal concentration absorbed and accumulated in the plant parts (root, stem, and leaves). The maximum adsorption capacity was estimated at 9220 mg kg⁻¹ and used as a reference to establish the different Cd concentrations to be applied in the soil. M. crispa showed tolerance and revealed a reduction of height, the number of leaves and shoots, root development, and secondary toxicity signs such as chlorosis and leaf wilting. Comparing to the stems and leaves, Cd was retained mainly in the roots. PERMANOVA showed that plant growth variables and Cd concentrations in the plant’s part were affected by the Cd exposure time. The canonical discriminant analysis demonstrated height as the most affected variable until 45 growing days, and different responses were observed after 75 days. However, the number of shoots was the variable most affected by higher Cd concentrations. The bioaccumulation and translocation factors for all treatments were lower than one, indicating that M. crispa can be considered as an excluder plant and applied for a phytostabilization strategy.
Show more [+] Less [-]Thallium Toxicity in Mediterranean Horticultural Crops (Fragaria vesca L., Mentha pulegium L., Ocimum basilicum L.)
2016
Ferronato, Chiara | Carbone, Serena | Vianello, Gilmo | Vittori Antisari, Livia
Thallium is a non-essential, toxic element that concerns mining areas and their acid drainage effluents. Minerals containing thallium can be eroded, and Tl can be leached into soil, thus being spread into the environment and adsorbed by plants and living organisms, entering the food chain, and inducing serious toxicity problems. In this study, the Tl cycle was observed and analyzed on basil, mint, and strawberry cultivated in a greenhouse and irrigated with Tl-contaminated water. The Tl content in both bulk and rhizosphere soils as well as thallium present in different plant organs were analyzed during the experiment, with the aim of revealing both physiological symptoms and metabolic disorders linked to the Tl toxicity. The mechanism of plants to exclude, uptake, translocate, and tolerate Tl varied among the different species, and both the bioconcentration factor (BCF) and the translocation index (TI) were calculated to highlight a different response to Tl toxicity of strawberry, mint, and basil. Basil is the less tolerant species, while mint and strawberry showed different self-defense mechanism against Tl adsorption and translocation.
Show more [+] Less [-]Concentrations, Accumulation, and Interactions of Redoximorphic Metals (Fe, Mn) Between Other Elements in Plants Grown on Wastewater-Irrigated and Control Soils
2014
Avci, Halim | Yaman, Mehmet
Samples of soil and food plants were collected from wastewater-irrigated and control fields in the vicinity of Gaziantep, in southeast Turkey. The samples were analyzed for concentrations of several macro and trace elements to evaluate spatial differences and bioaccumulation. Emphasis was placed on redoximorphic metal (Mn/Fe) interactions. The plants and tissues that studied were corn (Zea mays) seeds, mint (Mentha) leaves, the vegetables eggplant (Solanum melongena L.) and pepper (Capsicum annuum L.), and tomato (Solanum lycopersicum L.) fruits. Concentrations of Mn and Fe in corn were generally lower than in the other food plants, while concentrations of Mn, Fe, and several elements in mint were higher in other plants. Except for mint, the Mn deficiencies in the various plant samples can be attributed to low Mn soil concentrations and the chemical and physical characteristics of the soil. Mn concentrations in both wastewater-irrigated soils and control soils were lower than what has been reported as an average for the Earth’s crust (crustal average). There was considerable variability in the concentrations of Fe, with mint having the highest concentration (650 mg/kg) and corn the lowest (20 mg/kg). Significant positive relationships (coefficient of determination (R²) >0.50) were calculated between Mn and Fe in corn (R² = 0.83). The R²for tomato was 0.43, but all other relationships were much poorer for all other species. Several elements (trace and macro) demonstrated positive relationships with Mn or Fe, although there was little across-species consistency. For example, the R²values for both Mn and Fe correlated with Zn, P, and Mg were all >0.80 for Z. mays, but were all <0.10 for Mentha. The response of the members of the Solanaceae family (eggplant, pepper, and tomato) to the presence of Mn, Fe, and other soil constituents was similar in many respects, showing differences from Z. mays and, in particular, Mentha. Similarities among related plants are not surprising and would be expected given similar physiologies and metabolic pathways. Higher uptake of certain metals may be associated with the dominant form of the element in the soil matrix. The uptake of chemicals to plant tissues is influenced by the chemical and physical characteristics of the soil and species-specific factors.
Show more [+] Less [-]Antioxidant and antimicrobial activities of phytonutrients as antibiotic substitutes in poultry feed
2022
Seidavi, Alireza | Tavakoli, Masoomeh | Asroosh, Fariborz | Scanes, C. G. | Abd El-Hack, Mohamed E. | Naiel, Mohammed A. E. | Taha, Ayman E. | Aleya, Lotfi | El-Tarabily, Khaled A. | Swelum, Ayman A.
Globally, there is increasing demand for safe poultry food products free from antibiotic residues. There is thus a need to develop alternatives to antibiotics with safe nutritional feed derivatives that maximize performance, promote the intestinal immune status, enrich beneficial microbiota, promote health, and reduce the adverse effects of pathogenic infectious microorganisms. With the move away from including antibiotics in poultry diets, botanicals are among the most important alternatives to antibiotics. Some botanicals such as fennel, garlic, oregano, mint, and rosemary have been reported to increase the poultry’s growth rate and/or feed to gain ratio. Botanicals’ role is assumed to be mediated by improved immune responses and/or shifts in the microbial population in the intestine, with the elimination of pathogenic species. In addition, modulation of the gut microbiota resulted in various physiological and immunological responses and promoted beneficial bacterial strains that led to a healthy gut. There is thus a need to understand the relationship between poultry diets supplemented with botanicals and good health of the entire gastrointestinal tract if we intend to use these natural products to promote general health status and production. This current review provides an overview of current knowledge about certain botanicals that improve poultry productivity by modulating intestinal health and reducing the negative impacts of numerous pathogenic bacteria. This review also describes the efficacy, negative effects, and modes of action of some common herbal plants applied in poultry as alternatives to reduce the use of antibiotics.
Show more [+] Less [-]Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole
2018
Muchembled, Jérôme | Deweer, Caroline | Sahmer, Karin | Halama, Patrice
The antifungal activity of seven essential oils (eucalyptus, clove, mint, oregano, savory, tea tree, and thyme) was studied on Venturia inaequalis, the fungus responsible for apple scab. The composition of the essential oils was checked by gas chromatography-mass spectrometry. Each essential oil had its main compound. Liquid tests were performed to calculate the IC₅₀ of essential oils as well as their majority compounds. The tests were made on two strains with different sensitivities to tebuconazole: S755, the sensitive strain, and rs552, the strain with reduced sensitivity. Copper sulfate was selected as the reference mineral fungicidal substance. IC₅₀ with confidence intervals were calculated after three independent experiments. The results showed that all essential oils and all major compounds had in vitro antifungal activities. Moreover, it was highlighted that the effectiveness of four essential oils (clove, eucalyptus, mint, and savory) was higher than copper sulfate on both strains. For each strain, the best activity was obtained using clove and eucalyptus essential oils. For clove, the IC₅₀ obtained on the sensitive strain (5.2 mg/L [4.0–6.7 mg/L]) was statistically lower than the IC₅₀ of reduced sensitivity strain (14 mg/L [11.1–17.5 mg/L]). In contrast, for eucalyptus essential oil, the IC₅₀ were not different with respectively 9.4–13.0 and 12.2–17.9 mg/L for S755 and rs552 strains. For mint, origano, savory, tea tree, and thyme, IC₅₀ were always the best on rs552 strain. The majority compounds were not necessarily more efficient than their corresponding oils; only eugenol (for clove) and carvacrol (for oregano and savory) seemed to be more effective on S755 strain. On the other hand, rs552 strain seemed to be more sensitive to essential oils than S755 strain. In overall, it was shown that essential oils have different antifungal activities but do not have the same antifungal activities depending on the fungus strain used.
Show more [+] Less [-]Potential health impacts from different vegetable nitrate intake scenarios and providing strategies to manage the risks for Iranian population
2018
Haftbaradaran, Shirin | Khoshgoftarmanesh, Amir Hossein | Malakouti, Mohammad Jafar
Health risk from nitrate was predicted for different scenarios of vegetable consumption and nitrate contents in Iran. Finally, certain management scenarios were presented for nitrate risk mitigation under worst-case scenario considering each vegetable contribution in nitrate intake. Two fruit (bell pepper and tomato) and two leafy vegetables (lettuce and mint) were sampled in a combined randomized method from fields, greenhouses, and markets of Isfahan province, Iran during October to December 2015. To assess the potential health impacts of nitrate from the vegetable ingestion, the present status and three different scenarios of increasing vegetable consumption and/or increasing plant nitrate concentrations were considered. Two management scenarios for reducing the total nitrate intake below the allowable values were predicted. By increasing vegetable consumption under scenario 1 and nitrate concentration under scenario 3, the total hazard quotient (THQs) was increased, although the highest increase (12-fold) in the THQs was provided by lettuce. Health risk from nitrate for sensitive groups was effectively reduced by a 70% decrease in lettuce nitrate concentration. In the second management scenario, decreasing upper nitrate concentrations in the other sources (except lettuce) by 30% declined nitrate intake in children (< 6 years old) and boys (7–14 years old) below acceptable daily intake (ADI). By taking into account the increases in the amounts of consumption and nitrate in vegetables at different scenarios, it was revealed that the critical factor for a high dietary exposure to nitrate is not the absolute amount of vegetables consumed but the type of vegetable (lettuce) and the concentration of nitrate related to the conditions of production. Therefore, to manage any risks to human health from dietary nitrate exposure resulting from vegetable consumption, focus on lettuce instead of taking other vegetables equally into account is needed.
Show more [+] Less [-]