Refine search
Results 41-50 of 216
Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes Full text
2021
Mateos-Cárdenas, Alicia | van Pelt, Frank N.A.M. | O’Halloran, John | Jansen, Marcel A.K.
Plastic pollution is a new, pressing, environmental topic. Microplastics are considered contaminants of emerging concern and, consequently, microplastic research has grown exponentially in the last decade. Here, current knowledge regarding the impacts of micro- and nanoplastics on terrestrial plants and aquatic macrophytes is discussed, with a special focus on adsorption, uptake and toxicological effects. Our review reveals that a range of plants and macrophytes can adsorb or internalise plastic particles. Both processes depend on particle characteristics such as size and charge, as well as plant features including a sticky or hydrophobic surface layer. This finding is of concern given that plants and aquatic macrophytes are at the bottom of food webs and are a crucial component of the human diet. Therefore, there is a critical need for improved understanding of adsorption, uptake and impacts of micro- and nanoplastics, and the consequences thereof for trophic transfer, food safety and security. Also, a range of stress responses have been observed for many plant and macrophyte species after both short and long-term exposures to plastic particles. Given that some plastic particles can affect plant productivity, we surmise that plastic particles may potentially impact ecosystem productivity and function. Here we present a synthesis and a critical evaluation of the state of knowledge of micro- and nanoplastics and plants and macrophytes, identifying key questions for future research.
Show more [+] Less [-]A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants Full text
2020
The application of surfactants is an effective way to inhibit the migration of organic contaminants (OCs) from soil to plants, and thus would be a great candidate method for producing safe agricultural products in organic-contaminated farmland. In this study, it was found that cetyltrimethyl ammonium bromide (CTMAB) reduced the OCs in cabbage by 22.0–64.1%, and those in lettuce by 18.8–36.5%. We developed a mathematical model to predict the accumulation of OCs in plants in the presence of surfactants. The successive partitioning of OCs among three phases, namely, soil, soil water and plant roots, was considered. The equilibrium of OC between the soil and soil water was scaled using the sorption coefficient of OCs on soils normalized by the soil organic carbon (Kₒc) and carbon-normalized OCs sorption coefficient with the sorbed surfactants (Kₛₛ). To precisely calculate the Kₒc and Kₛₛ, the bioavailable and bound OCs were measured using a sequential extraction method. Linear positive correlations between the logarithm of Kₒc (or Kₛₛ) and the logarithm of the octanol-water partition coefficient (log Kₒw) of OCs were established for laterite soils, paddy soils and black soils. In the presence of CTMAB, the equilibrium of OCs between the soil water and plant roots was scaled using the carbon-normalized OC sorption coefficient with the sorbed surfactants (Kₛf), whose logarithmic value was linearly correlated with the log Kₒw of the OCs. A three-phase-successive partition-limited model was developed based on these relationships, demonstrating an average prediction accuracy of 76.6 ± 36.8%. Our results indicated that the decrease in bioavailable OCs in soils and the increase in sorption of OCs on roots should be taken into consideration when predicting plant uptake. This research provides a validated mathematical model for predicting the concentration of OCs in plants in the presence of surfactants.
Show more [+] Less [-]Using change-point models to estimate empirical critical loads for nitrogen in mountain ecosystems Full text
2017
Roth, Tobias | Kohli, Lukas | Rihm, Beat | Meier, Reto | Achermann, Beat
To protect ecosystems and their services, the critical load concept has been implemented under the framework of the Convention on Long-range Transboundary Air Pollution (UNECE) to develop effects-oriented air pollution abatement strategies. Critical loads are thresholds below which damaging effects on sensitive habitats do not occur according to current knowledge. Here we use change-point models applied in a Bayesian context to overcome some of the difficulties when estimating empirical critical loads for nitrogen (N) from empirical data. We tested the method using simulated data with varying sample sizes, varying effects of confounding variables, and with varying negative effects of N deposition on species richness. The method was applied to the national-scale plant species richness data from mountain hay meadows and (sub)alpine scrubs sites in Switzerland. Seven confounding factors (elevation, inclination, precipitation, calcareous content, aspect as well as indicator values for humidity and light) were selected based on earlier studies examining numerous environmental factors to explain Swiss vascular plant diversity. The estimated critical load confirmed the existing empirical critical load of 5–15 kg N ha−1 yr−1 for (sub)alpine scrubs, while for mountain hay meadows the estimated critical load was at the lower end of the current empirical critical load range. Based on these results, we suggest to narrow down the critical load range for mountain hay meadows to 10–15 kg N ha−1 yr−1.
Show more [+] Less [-]Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake Full text
2013
Wan, Xiao-ming | Tandy, Susan | Hockmann, Kerstin | Schulin, R. (Rainer)
A pot experiment was conducted to investigate the solubility and redox species of antimony (Sb) in a relocated shooting range soil and its uptake by Lolium perenne L. and Holcus lanatus L. under different water regimes. After 1-week waterlogging, the total Sb concentration in soil solution decreased from ∼110 μg L−1 to <20 μg L−1, and slowly increased over the following 4 weeks, with the dissolution of Fe and Mn (hydr)oxides. In this process, half of the Sb in soil solution was reduced to Sb(III), which greatly affected the plant uptake of Sb. Waterlogging increased shoot Sb concentrations of L. perenne by ∼10 fold but decreased uptake in H. lanatus by 80%. Results indicate that Sb might primarily be taken up as Sb(III) by L. perenne and as Sb(V) by H. lanatus. Temporary waterlogging of soil may increase the risk of trace elements entering the food chain.
Show more [+] Less [-]Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: Review and database value to resource sustainability Full text
2013
Lewis, Michael | Pryor, Rachel
Phytotoxicity results are reviewed for oils, dispersants and dispersed oils. The phytotoxicity database consists largely of results from a patchwork of reactive research conducted after oil spills to marine waters. Toxicity information is available for at least 41 crude oils and 56 dispersants. As many as 107 response parameters have been monitored for 85 species of unicellular and multicellular algae, 28 wetland plants, 13 mangroves and 9 seagrasses. Effect concentrations have varied by as much as six orders of magnitude due to experimental diversity. This diversity restricts phytotoxicity predictions and identification of sensitive species, life stages and response parameters. As a result, evidence-based risk assessments for most aquatic plants and petrochemicals and dispersants are not supported by the current toxicity database. A proactive and experimentally-consistent approach is recommended to provide threshold toxic effect concentrations for sensitive life stages of aquatic plants inhabiting diverse ecosystems.
Show more [+] Less [-]Effects of chlorimuron ethyl on terrestrial and wetland plants: Levels of, and time to recovery following sublethal exposure Full text
2013
Carpenter, David | Boutin, Céline | Allison, Jane E.
Current pesticide registration guidelines call for short-term testing of plants; long-term effects on vegetative parts and reproduction remain untested. The aims of our study were to determine level of recovery and recovery times for plants exposed to the sulfonylurea herbicide chlorimuron ethyl using data collected from single species, dose–response greenhouse experiments. The nine terrestrial and eight wetland species tested showed variable levels of recovery and recovery timeframes. Many species (six terrestrial and five wetland) were vegetatively stunted at sublethal doses and were reproductively impaired. Full recovery did not occur at all doses and maximum recovery times varied from 3 to 15 weeks in this controlled environment. In a complex community, affected species may be displaced by tolerant species, through interspecific competition, before they fully recover. It is plausible that individual populations could be diminished or eliminated through reduced seedbank inputs (annuals and perennials) and asexual reproduction (perennials).
Show more [+] Less [-]Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans Full text
2013
Höss, Sebastian | Menzel, Ralph | Gessler, Frank | Nguyen, Hang T. | Jehle, Johannes A. | Traunspurger, W. (Walter)
The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L−1), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans.
Show more [+] Less [-]Plant Species Sensitivity Distributions for ozone exposure Full text
2013
van Goethem, T.M.W.J. | Azevedo, L.B. | van Zelm, R. | Hayes, F. | Ashmore, M.R. | Huijbregts, M.A.J.
This study derived Species Sensitivity Distributions (SSD), representing a cumulative stressor-response distribution based on single-species sensitivity data, for ozone exposure on natural vegetation. SSDs were constructed for three species groups, i.e. trees, annual grassland and perennial grassland species, using species-specific exposure–response data. The SSDs were applied in two ways. First, critical levels were calculated for each species group and compared to current critical levels for ozone exposure. Second, spatially explicit estimates of the potentially affected fraction of plant species in Northwestern Europe were calculated, based on ambient ozone concentrations. We found that the SSD-based critical levels were lower than for the current critical levels for ozone exposure, with conventional critical levels for ozone relating to 8–20% affected plant species. Our study shows that the SSD concept can be successfully applied to both derive critical ozone levels and estimate the potentially affected species fraction of plant communities along specific ozone gradients.
Show more [+] Less [-]Incidence of invasive macrophytes on methylmercury budget in temperate lakes: Central role of bacterial periphytic communities Full text
2013
Gentès, Sophie | Monperrus, Mathilde | Legeay, Alexia | Maury-Brachet, Régine | Davail, Stephane | André, Jean-Marc | Guyoneaud, Rémy
Several studies demonstrated high mercury (Hg) methylation and demethylation in the periphyton associated with floating roots in tropical ecosystems. The importance of aquatic plants on methylmercury production in three temperate ecosystems from south-western France was evaluated through Hg species concentrations, and Hg methylation/demethylation activities by using stable isotopic tracers (199Hg(II), Me201Hg). Hg accumulation and high methylation and demethylation yields were detected in plant roots and periphyton, whereas results for sediment and water were low to insignificant. The presence of sulfate reducing prokaryotes was detected in all compartments (T-RFLP based on dsrAB amplified through nested PCR) and their main role in Hg methylation could be demonstrated. In turn, sulfate reduction inhibition did not affect demethylation activities. The estimation of net MeHg budgets in these ecosystems suggested that aquatic rhizosphere is the principal location for methylmercury production and may represent an important source for the contamination of the aquatic food chain.
Show more [+] Less [-]A geochemical study of toxic metal translocation in an urban brownfield wetland Full text
2012
Qian, Yu | Gallagher, Frank J. | Feng, Huan | Wu, Meiyin
Rhizosphere soil and dominant plant samples were collected at a brownfield site in New Jersey, USA, during summer 2005 to evaluate plant metal uptake from the contaminated soils. Metal concentrations varied from 4.25 to 978 μg g⁻¹ for As, 9.68–209 μg g⁻¹ for Cr, 23.9–1870 μg g⁻¹ for Cu, and 24.8–6502 μg g⁻¹ for Zn. A wide range of metal uptake efficiencies in the roots, stems and leaves was found in this study. Data showed that (1) Betula populifolia has high Zn, Cu and As accumulations in the root, and high concentrations of Cu and Zn in the stem and the leaf; (2) Rhus copallinum has high accumulation of Zn and Cr in the leaf and Cu in the stem; (3) Polygonum cuspidatum has high accumulations of Cu and As in the root; and (4) Artemisia vulgaris shows high Cu accumulation in the leaf and the stem.
Show more [+] Less [-]