Refine search
Results 1-6 of 6
The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook.)
2020
Zhan, Juan | Huang, Huagang | Yu, Haiying | Zhang, Xizhou | Zheng, Zicheng | Wang, Yongdong | Liu, Tao | Li, Tingxuan
Cell wall acts as a major metal sink in plant roots, while a few studies focused on root cell wall binding in plants for the phytostabilization of multi-metal contaminated soils. A pot experiment was performed to characterize root cell wall properties of the mining ecotype (ME) and non-mining ecotype (NME) of Athyrium wardii (Hook.) in response to Cd and Pb. The cell wall was found to be the major sink for Cd (41.3–54.3%) and Pb (71.4–73.8%) accumulation in roots of the ME when exposed to Cd and/or Pb. The ME showed more Cd and Pb accumulation in root cell walls when exposed to Cd and Pb simultaneously, compared with those exposed to single Cd or Pb as well as the NME, suggesting some modifications for cell walls. The uronic acid contents of pectin and hemicellulose 1 (HC1) in root cell walls of the ME increased significantly when exposed to Cd and Pb simultaneously, suggesting enhanced cell wall binding capacity, thus resulting in more Cd and Pb bound to pectin and HC1. In particular, pectin was found to be the predominant binding site for Cd and Pb. Greater pectin methylesterase activity along with a lower degree of methylesterification were observed in the cell walls of the ME when exposed to Cd and Pb simultaneously. Furthermore, the ME present more O–H, N–H, C–OH, C–O–C, C–C and/or Ar–H in root cell walls when exposed to Cd and Pb simultaneously. These changes of root cell wall properties of the ME lead to enhanced cell wall binding ability in response to the co-contamination of Cd and Pb, thus could be considered a key process for enhanced Cd and Pb accumulation in roots of the ME when exposed to Cd and Pb simultaneously.
Show more [+] Less [-]Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem
2012
Lidbury, Ian | Johnson, Vivienne | Hall-Spencer, Jason M. | Munn, C. B. (Colin B.) | Cunliffe, Michael
The impacts of ocean acidification on coastal biofilms are poorly understood. Carbon dioxide vent areas provide an opportunity to make predictions about the impacts of ocean acidification. We compared biofilms that colonised glass slides in areas exposed to ambient and elevated levels of pCO₂ along a coastal pH gradient, with biofilms grown at ambient and reduced light levels. Biofilm production was highest under ambient light levels, but under both light regimes biofilm production was enhanced in seawater with high pCO₂. Uronic acids are a component of biofilms and increased significantly with high pCO₂. Bacteria and Eukarya denaturing gradient gel electrophoresis profile analysis showed clear differences in the structures of ambient and reduced light biofilm communities, and biofilms grown at high pCO₂ compared with ambient conditions. This study characterises biofilm response to natural seabed CO₂ seeps and provides a baseline understanding of how coastal ecosystems may respond to increased pCO₂ levels.
Show more [+] Less [-]Microalgal–Bacterial Flocs and Extracellular Polymeric Substances: Two Essential and Valuable Products of Integrated Algal Pond Systems
2019
Jimoh, Taobat A. | Keshinro, M Olajide | Cowan, Keith A.
The integrated algal pond system (IAPS) is a passive wastewater treatment technology that can be used to remediate liquid waste from domestic, industrial and agricultural sources. The system exploits the mutualistic interaction between microalgae and bacteria to generate water of a quality suitable for discharge and/or reuse. During the treatment process, biomass in the form of microalgal–bacterial flocs (MaB-flocs) is generated, and this can be harvested and beneficiated in downstream processing. Here, we review literature on MaB-floc and extracellular polymeric substance (EPS) formation and discuss how essential microalgal–bacterial mutualism is at effecting IAPS-based wastewater treatment. Aggregation of microalgae and bacteria into MaB-flocs is clearly an outcome of EPS production by these microorganisms and arises for purposes of chemical and developmental interaction, protection, communication, aggregation and adhesion. The polymeric compounds which form the scaffold of this extracellular matrix comprise polysaccharides, proteins, uronic acid and nucleic acid. Natural EPS can be used as bioflocculant in water purification and in the dewatering and settling of sludge and is therefore an ideal natural replacement for commercially available synthetic polymers. Additionally, EPS are considered high value and can be used in many commercial applications. Thus, and to ensure sustained MaB-floc production in IAPS-based wastewater treatment plants, it is important that correct levels of EPS are maintained to facilitate settling and biomass recovery. Furthermore, it is the associated environmental and operational conditions that most impact EPS production and in turn, MaB-floc formation, and quality of the final IAPS-treated water.
Show more [+] Less [-]Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum
2021
Wang, Juncai | Chen, Xunfeng | Chu, Shaohua | Hayat, Kashif | Chi, Yaowei | Zhi, Yuee | Zhang, Dan | Zhou, Pei
Solanum nigrum is a well-documented cadmium (Cd) hyperaccumulator; however, its Cd-induced tolerance capability and detoxification mechanism remain elusive. Hence, a short-term hydroponic experiment was performed in a multiplane glasshouse to determine the influence of Cd toxicity on subcellular distribution, chemical forms, and the physiological responses of cell wall towards Cd stress in a 4-week-old plant. The experiment was conducted following completely randomized design (CRD) with five treatments (n = 4 replicates). The results showed that Cd stress showed dose-dependent response towards growth inhibition. The subcellular distribution of Cd in S. nigrum was in the order of cell wall > soluble fractions > organelles, and Cd was predominantly extracted by 1 M NaCl (29.87~43.66%). The Cd contents in different plant tissues and cell wall components including pectin, hemicellulose 1 (HC1), hemicellulose 2 (HC2), and cellulose were increased with the increase in Cd concentrations; however, the percentage of Cd concentration decreased in pectin and cellulose. Results of the polysaccharide components such as uronic acid, total sugar contents, and pectin methylesterase (PME) activity showed Cd-induced dose-dependent increase relative to exposure Cd stress. The pectin methylesterase (PME) activity was significantly (p < 0.05) enhanced by 125.78% at 75 μM Cd in root, 105.78% and 73.63% at 100 μM Cd in stem and leaf, respectively. In addition, the esterification, amidation, and pectinase treatment of cell wall and Fourier transform infrared spectroscopy (FTIR) assay exhibited many functional groups that were involved in cell wall retention Cd, especially on carboxyl and hydroxyl groups of cell wall components that indicated that the –OH and –COOH groups of S. nigrum cell wall play a crucial role in Cd fixation. In summary, results of the current study will add a novel insight to understand mobilization/immobilization as well as detoxification mechanism of cadmium in S. nigrum.
Show more [+] Less [-]Characterization and chromium biosorption potential of extruded polymeric substances from Synechococcus mundulus induced by acute dose of gamma irradiation
2019
Hussein, Mervat H. | Hamouda, Ragaa A. | Elhadary, Abdel Monsef A. | Abuelmagd, Muhammad A. | Ali, Shafaqat | Rizwan, Muhammad
This study characterized the extruded polymeric substances (EPS) secreted from Synechococcus mundulus cultures under the effect of 2-KGy gamma irradiation dose. The EPS demonstrated seven monosaccharides, two uronic acids and several chemical functional groups: O–H, N–H, =C–H, C=C, C=O, COO–, O–SO₃, C–O–C and a newly formed peak at 1593 cm⁻¹ (secondary imide). The roughness of EPS was 96.71 nm and only 28.4% total loss in weight was observed at 800 °C with a high degree of crystallinity quantified as CIDSC (0.722) and CIXRD (0.718). Preliminary comparative analyses of EPS exhibited high protein content in the radiologically modified (R-EPS) than control (C-EPS). Modified EPS were characterized with a high biosorption efficiency, which could be attributed to its high content of uronic acids, protein and sulphates as well as various saccharide monomers. Data revealed that 0.0213 mg L⁻¹ h⁻¹ is the maximum biosorption rate (SBRₘₐₓ) of Cr(VI) for R-EPS, whereas 0.0204 mg L⁻¹ h⁻¹ SBRₘₐₓ for the C-EPS respectively.
Show more [+] Less [-]Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges
2013
d’Abzac, Paul | Bordas, François | Joussein, Emmanuel | van Hullebusch, Eric D. | Lens, P. N. L. (Piet N. L.) | Guibaud, Gilles
Extracellular polymeric substances (EPS) were extracted from four anaerobic granular sludges with different procedures to study their involvement in biosorption of metallic elements. EPS extracts are composed of closely associated organic and mineral fractions. The EPS macromolecules (proteins, polysaccharides, humic-like substances, nucleic, and uronic acids) have functional groups potentially available for the binding of metallic elements. The acidic constants of these ionizable groups are: pK ₐ₁ (4–5) corresponding to the carboxyl groups; pK ₐ₂ (6–7) corresponding to the phosphoric groups; pK ₐ₃ (8–10) and pK ₐ₄ (≈10) corresponding to the phenolic, hydroxyl, and amino groups. The polarographic study confirms the higher affinity of the EPS to bind to lead than to cadmium. Moreover, the binding of these metallic compounds with the EPS is a mix of several sorption mechanisms including surface complexation, ion exchange, and flocculation. Inorganic elements were found as ions linked to organic molecules or as solid particles. The mineral fraction affects the binding properties of the EPS, as the presence of salts decreases the EPS binding ability. Calcite and apatite particles observed on SEM images of EPS extracts can also sorb metallic elements through ion exchange or surface complexation.
Show more [+] Less [-]