Refine search
Results 1-10 of 10
Physiological effects of toxic elements on a wild nightjar species
2020
Espín, Silvia | Sánchez-Virosta, Pablo | Zamora-Marín, José M. | León-Ortega, Mario | Jiménez, Pedro | Zamora-López, Antonio | Camarero, Pablo R. | Mateo, Rafael | Eeva, Tapio | García-Fernández, Antonio J.
Nightjars are considered human-tolerant species due to the population densities reached in strongly managed landscapes. However, no studies have been done evaluating metal-related effects on physiology, condition or fitness in any nightjar species. The main aim of this study was to evaluate how metal exposure affects physiology and condition in red-necked nightjar (Caprimulgus ruficollis) populations inhabiting three different environments in southeastern Spain: agricultural-urban area (n = 15 individuals), mining area (n = 17) and control area (n = 16).Increased plasma mineral levels (magnesium and calcium) and alkaline phosphatase (ALP) activity were observed in breeding females, and ALP was significantly higher in young birds due to bone growth and development. In the mining-impacted environment, nightjars showed decreased retinol (17.3 and 23.6 μM in the mining area and control area), uric acid (28.8 and 48.6 mg/dl in the mining area and control area) and albumin (16.2 and 19.6 g/l in the mining area and control area), probably impaired by a combination of toxic metal exposure and low prey quantity/quality in that area. Moreover, they showed increased plasma tocopherol levels (53.4 and 38.6 μM in the mining area and control area) which may be a response to cope with metal-induced oxidative stress and lipid peroxidation. Blood concentrations of toxic metals (As, Pb, Cd and Hg) were negatively associated with calcium, phosphorus, magnesium, ALP, total proteins and body condition index. This could lead to metal-related disorders in mineral metabolism and ALP activity that may potentially increase the risk of skeletal pathologies and consequent risk of fractures in the long term, compromising the survival of individuals. Further studies need to be carried out to evaluate potential metal-related effects on the antioxidant status and bone mineralization of nightjars inhabiting mining environments.
Show more [+] Less [-]Transcriptional responses to starvation stress in the hepatopancreas of oriental river prawn Macrobrachium nipponense
2019
Li, Fajun | Fu, Chunpeng | Xie, Yannian | Wang, Aili | Li, Jianyong | Gao, Junping | Cui, Xinyu
Various crustaceans are farmed using aquaculture, and food deprivation or fasting can occur due to changing of environmental or management strategies. However, the molecular mechanisms underlying responses to starvation in crustaceans remain unclear. To address this, 12 hepatopancreas transcriptomes were compared for oriental river prawn (Macrobrachium nipponense) from four fasting stages (0, 7, 14 and 21 d). Gene Ontology functional annotation and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes were subsequently performed. During the early stages of starvation (0–7 d), drug metabolism via the cytochrome P450 pathway and metabolism of xenobiotics by the cytochrome P450 pathway were enriched, suggesting that they metabolised compounds generated under starvation stress. As starvation proceeded (7–14 d), the retinol (vitamin A) metabolism pathway was activated, based on three up-regulated genes (CYP3, ADH and UGT), along with the two p450 pathways. Meanwhile, vitamin A was gradually consumed. As acute starvation was reached (14–21 d), vitamin A deficiency decreased the mRNA expression levels of IGF-I that is involved in the mTOR signalling pathway, which ultimately affected the growth and development of M. nipponense. Our results implicate drug/xenobiotic metabolism by cytochrome P450s in adaptation to starvation stress. Furthermore, metabolic cascades (CYP and retinol pathways) and growth (mTOR signalling) pathways are clearly triggered in crustaceans during starvation. The findings expand our understanding of the genes associated with hepatopancreas functioning in M. nipponense, and the underlying molecular mechanisms that govern the responses of crustaceans to starvation stress.
Show more [+] Less [-]Chronic effects of lead (Pb) on bone properties in red deer and wild boar: Relationship with vitamins A and D3
2013
Rodríguez-Estival, Jaime | Álvarez-Lloret, Pedro | Rodríguez-Navarro, Alejandro B. | Mateo, Rafael
Here we study the occurrence of abnormalities on bone tissue composition and turnover mechanisms through the Pb-mediated disruption of vitamins A and D in wild ungulates living in a lead (Pb)-polluted mining area. Red deer (Cervus elaphus) and wild boar (Sus scrofa) from the mining area had significantly higher liver and bone Pb levels than controls, which were associated with the depletion of liver retinyl esters and the corresponding increase of free retinol levels both in deer and boar from the mining area. Pb-exposed adult deer had lower carbonate content in bone mineral than controls, which was associated with the increased free retinol percentage. In wild boar, the degree of bone mineralization was also positively associated with higher burdens of retinyl esters. These results suggest that Pb-associated changes in bone composition and mineralization is likely influenced by the depletion of vitamin A in wildlife exposed to environmental Pb pollution.
Show more [+] Less [-]Effects of dietary lead exposure on vitamin levels in great tit nestlings – An experimental manipulation
2016
Ruiz, Sandra | Espín, Silvia | Rainio, Miia | Ruuskanen, Suvi | Salminen, Juha-Pekka | Lilley, Thomas M. | Eeva, Tapio
Exposure to metal pollution negatively affects animal physiology, including nutrient metabolism, but in the wild an effect can seldom be attributed to a single metal. Moreover, little is known about how the metabolism of vitamins, essential micronutrients for developing juveniles, is affected by toxic metals. Therefore we experimentally investigated the effects of lead (Pb), a widespread toxic metal, on four fat-soluble vitamins A (total and retinol), D3, E (total and α-tocopherol) and K and carotenoids (lutein, zeaxanthin and unidentified) in great tit (Parus major) nestlings. In addition to a control group where no Pb was provided, two Pb-dosed groups were compared to a metal exposed group in the vicinity of a Ni–Cu smelter. We examined whether Pb treatment affects vitamin homeostasis and how the response of Pb-treated birds relates to that of a population under industrial exposure of Pb and other metals. For this purpose, vitamin and carotenoid levels were quantified with UPLC-MS from plasma of 7 days-old nestlings. All metal exposed groups showed increased vitamin A and retinol levels. However, vitamin levels were not directly associated with fecal Pb levels, with the exception of retinol, which was positively correlated with fecal Pb. Alpha-tocopherol, lutein and zeaxanthin levels were positively associated with body mass and wing growth rate. To conclude, Pb exposure increased plasma vitamin A and retinol levels while the levels of other vitamins and carotenoids rather reflected secondary pollution effects via differences in habitat and diet quality at the smelter site. Our findings suggest Pb exposed nestlings may allocate the vitamins needed for growth and development to fight the physiological stress thus compromising their fitness.
Show more [+] Less [-]Biomarker responses associated with halogenated organic contaminants in northern fulmars (Fulmarus glacialis) breeding in the Canadian Arctic
2011
Braune, Birgit M. | Trudeau, Suzanne | Jeffrey, Deborah A. | Mallory, Mark L.
We examined relationships between hepatic concentrations of halogenated organic contaminants and ethoxyresorufin O-deethylase (EROD) activity and retinoid (vitamin A) concentrations in livers, as well as retinol and thyroid hormone (TT₃, TT₄) levels in blood plasma, of northern fulmars at two breeding colonies in the Canadian High Arctic. Biomarker levels or responses did not differ significantly between males and females at either colony, nor was there any significant difference between colonies. No significant relationships were found between thyroid hormone or hepatic retinoid concentrations and any of the dioxin-like compounds or their Toxic Equivalents (TEQs) although significant positive correlations were found with plasma retinol (p < 0.03). EROD activity was significantly correlated with hepatic dioxin-like compounds and their TEQs (p < 0.001) as well as total PCBs (p < 0.01), which suggests that EROD induction occurs in northern fulmars at environmentally-relevant concentrations.
Show more [+] Less [-]Environmental science and pollution research role of heavy metal concentrations and vitamin intake from food in depression: a national cross-sectional study (2009–2017)
2022
Nguyen, Hai Duc | Oh, Hojin | Hoang, Ngoc Hong Minh | Jo, Won Hee | Kim, Min-Sun
Little is known about associations between depression and serum heavy metal levels, dietary vitamin intakes. Thus, we sought to determine the nature of these associations and to predict risks of depression using marginal effects. A data set of 16,371 individuals aged ≥10 years that participated in Korea National Health and Nutrition Examination Surveys (KNHANES) conducted from 2009 to 2017 (excluding 2014 and 2015) was used to obtain information on sociodemographics, family histories, lifestyles, serum heavy metal levels, food intakes, and depression. Serum cadmium (Cd) and lead (Pb) levels were analyzed by graphite furnace atomic absorption spectrometry and mercury (Hg) levels using a mercury analyzer. Daily vitamin intakes were calculated by 24-h dietary recall. The results obtained showed that females are at higher risk of depression than males. A doubling of serum Cd was associated with a 21% increase in depression (AOR 1.21, 95% CI: 1.07–1.37, p = 0.002), whereas twofold increases in daily vitamin B1, B3 and vitamin A intakes reduced the risk of depression by 17% (0.83, 95% CI: 0.73–0.95, p = 0.005), 20% (0.80, 95% CI: 0.70–0.91, p = 0.001), and 8% (0.92, 95% CI: 0.85–0.99, p = 0.020), respectively. Interactions between heavy metals, vitamin intakes, and sex did not influence the risk of depression. The result shows that increased daily dietary vitamin intake might protect the public against depression. Further studies are needed to reduce the risks posed by heavy metals and to determine more comprehensively the effects of daily dietary vitamin intake on depression.
Show more [+] Less [-]Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF–MS
2022
Zhou, Xia | Yang, Ya | Ming, Renyue | Chen, Hong | Hu, Deyu | Lu, Ping
Dinotefuran is a chiral insecticide widely used to control Nilaparvata lugens in agriculture. However, little is known about the toxic effects of dinotefuran enantiomers on aquatic organisms. In this study, zebrafish were exposed to 1.00 and 10.00 mg/L dinotefuran enantiomers for 96 h, after which multivariate pattern recognition, metabolite identification, and pathway analysis were performed. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were then conducted to reveal the metabolic perturbations caused by dinotefuran enantiomers. Metabolic pathway analysis revealed the perturbation of five main pathways, including phenylalanine, tyrosine and tryptophan biosynthesis; phenylalanine metabolism; retinol metabolism; arginine and proline metabolism; and glycerophospholipid metabolism. These disturbed metabolic pathways were strongly correlated with energy, amino acid metabolism, and lipid metabolism. Pathway analysis also indicated that the metabolic pathway changes induced by the same level of R and S-dinotefuran were enantioselective. Our research may provide better insight into the risk of chiral dinotefuran in aquatic organisms in the environment.
Show more [+] Less [-]Identification of cadmium-produced lipid hydroperoxides, transcriptomic changes in antioxidant enzymes, xenobiotic transporters, and pro-inflammatory markers in human breast cancer cells (MCF7) and protection with fat-soluble vitamins
2020
Darwish, Wageh Sobhy | Chen, Zhen | Li, Yonghan | Wu, Yue | Chiba, Hitoshi | Hui, Shu-Ping
Cadmium (Cd) is a toxic metal that is regarded as a metallohormone with estrogen-like properties. The present study aimed at identification of lipid hydroperoxides produced in human breast cancer (MCF7) exposed to cadmium (Cd) at environmentally relevant levels. Cd induced cytotoxicity and oxidative stress and produced a series of 26 lipid hydroperoxide species including 14 phosphatidylcholine hydroperoxides (PC-OOH), 9 triacylglycerol hydroperoxides (TG-OOH), and 3 cholesteryl ester hydroperoxides (CE-OOH). Among these hydroperoxides, PC34:2-OOH, PC34:3-OOH, TG60:14-OOH, TG48:5-OOH, TG60:15-OOH, and CE20:4-OOH were produced in a dose-dependent manner, suggesting these as possible biomarkers for Cd exposure in MCF7 cells. In addition, Cd led to significant decreases in the gene expressions of antioxidants, detoxification enzymes, and xenobiotic transporters. In a protection trial, co-exposure of MCF7 cells to fat-soluble vitamins including vitamin A, D, and E reduced Cd-induced cytotoxicity, lipid peroxidation, oxidative stress, and inflammatory responses. Fat-soluble vitamins upregulated antioxidant and detoxification enzymes, and xenobiotic transporters. Therefore, dietary supplementation of such micronutrients is recommended for people at risk for exposure to Cd.
Show more [+] Less [-]β-carotene and retinol reduce benzo[a]pyrene-induced mutagenicity and oxidative stress via transcriptional modulation of xenobiotic metabolizing enzymes in human HepG2 cell line
2018
Darwish, WagehSobhy | Ikenaka, Yoshinori | Nakayama, Shouta | Mizukawa, Hazuki | Thompson, LesaA | Ishizuka, Mayumi
Benzo[a]pyrene (B[a]P) is one of the polycyclic aromatic hydrocarbons which is formed due to smoking of foods, incomplete combustion of woods, vehicle exhausts, and cigarettes smokes. B[a]P gets entry into human and animal bodies mainly through their diets. Metabolic activation of B[a]P is required to induce mutagenesis and carcinogenesis in animal and human studies. Carotenoids and retinoids are phytochemicals that if ingested have multiple physiological interferences in the human and animal bodies. In this study, we firstly investigated the protective effects of β-carotene, β-apo-8-carotenal, retinol, and retinoic acid against B[a]P-induced mutagenicity and oxidative stress in human HepG2 cells. Secondly, we tested the hypothesis of modulating xenobiotic metabolizing enzymes (XMEs) by carotenoids and retinoids as a possible mechanism of protection by these micronutrients against B[a]P adverse effects. The obtained results declared that β-carotene and retinol significantly reduced B[a]P-induced mutagenicity and oxidative stress. Tested carotenoids and retinoids reduced B[a]P-induced phase I XMEs and induced B[a]P reduced phase II and III XMEs. Thus, the protective effects of these micronutrients are probably due to their ability of induction of phase II and III enzymes and interference with the induction of phase I enzymes by the promutagen, B[a]P. It is highly recommended to consume foods rich in these micronutrients in the areas of high PAH pollution.
Show more [+] Less [-]Effects of vitamin A and vitamin E on attenuation of amphotericin B-induced side effects on kidney and liver of male Wistar rats
2020
Salehzadeh, Aref | Salehzadeh, Alireza | Maghsood, Amir-Hossein | Heidarisasan, Shirin | Taheri-Azandaryan, Masoumeh | Ghafourikhosroshahi, Abolfazl | Abbasalipourkabir, Roghayeh
Despite the fact that amphotericin B (AmB) is currently considered as the first choice for treatment of visceral leishmaniasis, it is associated with some side effects. This study was designed to investigate the protective effects of vitamins A and E against amphotericin B-induced adverse effects in the kidney and liver of rat. Thirty male Wistar rats aged 7–8 weeks and weighing around 200 g were randomly divided into five groups, each one containing six rats. The first to fifth groups received olive oil as the control groups, AmB, AmB + vitamin A, AmB + vitamin E, and AmB + vitamins A + E, respectively. Rats received vitamins by gavage (vitamin A, 1000 IU/kg and vitamin E, 100 IU/kg) and amphotericin B by injections (5.5 mg/kg body weight). The treatment was constantly continued for 5 days and days 7 and 21. At the end of the study, serum level of TAC, TOS, MDA, liver enzyme activity (ALT, AST, ALP, LDH), renal factors (urea, uric acid, and creatinine), lipid profile as well as histopathological changes of the liver and kidney were investigated. AmB significantly increased serum level of creatinine, urea, uric acid, ALP, TOS, MDA, and kidney and renal tissue damage (p < 0.05). Supplementation AmB with vitamins A and E alone or combination improved oxidative stress status, liver and renal tissue structure, and functional parameters and serum lipid profile. This study highlighted the effects of vitamin A and vitamin E on attenuation of amphotericin B-induced side effects on the kidney and liver of male Wistar rats. Combination of the two vitamins is more effective than either alone improving the oxidative stress status, serum lipid profile, or liver and renal tissue structure and functional parameters.
Show more [+] Less [-]