Refine search
Results 1031-1040 of 8,074
Human exposure to halogenated and organophosphate flame retardants through informal e-waste handling activities - A critical review Full text
2021
Ma, Yulong | Stubbings, William A. | Cline-Cole, R. A. | Harrad, Stuart
Informal electrical and electronic waste (e-waste) handling activities constitute a potentially important source of halogenated (HFRs) and organophosphate flame retardants (OPFRs) to the environment and humans. In this review, two electronic databases (ScienceDirect and Web of Science Core Collection) were searched for papers that addressed this topic. A total of 82 relevant studies (including 72 studies selected from the two databases and 10 studies located from the references of the first 72 selected studies) were identified that reported on human external and internal exposure to HFRs and OPFRs arising as a result of informal e-waste handling activities. Compared to the general population, higher levels of external exposure (i.e., inhalation, ingestion, and dermal absorption) and internal exposure (i.e., blood serum, hair, breast milk, urine, and other human matrices) to HFRs and OPFRs were identified for e-waste recyclers and residents inhabiting e-waste dismantling and recycling zones, especially for younger adults and children. Food intake and dust ingestion were the dominant exposure pathways for the majority of brominated flame retardants (BFRs) and dechlorane plus (DP); while inhalation was identified as the most significant pathway of human exposure to OPFRs in informal e-waste sites. The majority of research to date has focused on China and thus future studies should be conducted in other regions such as Africa and South Asia. Other suggested foci of future research are: examination of exposure via dermal contact with e-waste, dietary exposure of local populations to OPFRs, confirmation of the existence of and cause(s) of the higher body burdens of females compared with males amongst populations impacted by informal e-waste handling, and characterisation of exposure of such populations to chlorinated paraffins.
Show more [+] Less [-]Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat-rice cycles Full text
2021
Shan, Anqi | Pan, Jianqing | Kang, Kyŏng-ju | Pan, Minghui | Wang, Gang | Wang, Mei | He, Zhenli | Yang, Xiaoe
Understanding the comprehensive effect on crop production and quality, soil acidification, and Cd accumulation and distribution for wheat-rice rotation under N fertilization and continuous straw return is important for proper contaminated agricultural soil management. A 2-year paddy field experiment was conducted to study the effects of above factors change in the Zhejiang province, China. Fertilization treatments included: conventional N fertilizer application (N3), 20% reduction of N application (N2), 40% reduction of N application (N1), combined with three portions of straw incorporation: all straws retention (N3), half of the straws into the fields (S2), 20% straws retention(S1). The N1 treatments significantly decreased crop yields compared to N2 and N3 treatments. Except for C2-wheat, soil pH generally decreased with increasing N fertilizer input in the order of N1>N2>N3, regardless of how many straws was amended. Moreover, we found that straw addition plus N fertilization had a intersystem impacts on Cd accumulation, distribution and availability. Although total Cd had different trends among 4 experimental seasons, when the N reduced 20% applied, the DTPA-Cd contents were lowest among 3 out of four experimental seasons, except for that of C2-wheat, where N2 treatments ranked the second lower contents. For most seasons, Cd contents in straws were higher than soils and lowest in grains, and S2N2 treatment performed an intermediate value among all treatments. Furthermore, our study demonstrated that S2 or N2 treatments or S2N2 reduced the potential risk of plant diseases and pests with lower disease index, disease cluster rate. Notably, the relative outbreak of pests was remarkably suppressed under S2 treatments, especially S2N2. Thus, these findings demonstrated that in wheat-rice rotation reducing 20% N fertilization with 50% straw returning may be a win-win practice in this region for the equilibrium between agricultural productivity, quality and low Cd polluted risk.
Show more [+] Less [-]Iodoacetic acid disrupts mouse oocyte maturation by inducing oxidative stress and spindle abnormalities Full text
2021
Jiao, Xiaofei | Gonsioroski, Andressa | Flaws, Jodi A. | Qiao, Huanyu
Disinfection by-products (DBPs) are compounds produced during the water disinfection process. Iodoacetic acid (IAA) is one of the unregulated DBPs in drinking water, with potent cytotoxicity and genotoxicity in animals. However, whether IAA has toxic effects on oocyte maturation remains unclear. Here, we show that IAA exposure resulted in metaphase I (MI) arrest and polar-body-extrusion failure in mouse oocytes, indicating that IAA had adverse effects on mouse oocyte maturation in vitro. Particularly, IAA treatment caused abnormal spindle assembly and chromosome misalignment. Previous studies reported that IAA is a known inducer of oxidative stress in non-germline cells. Correspondingly, we found that IAA exposure increased the reactive oxygen species (ROS) levels in oocytes in a dose-dependent manner, indicating IAA exposure could induce oxidative stress in oocytes. Simultaneously, DNA damage was also elevated in the nuclei of these IAA-exposed mouse oocytes, evidenced by increased γ-H2AX focus number. In addition, the un-arrested oocytes entered metaphase II (MII) with severe defects in spindle morphologies and chromosome alignment after 14-h IAA treatment. An antioxidant, N-acetyl-L-cysteine (NAC), reduced the elevated ROS level and restored the meiotic maturation in the IAA-exposed oocytes, which indicates that IAA-induced maturation failure in oocytes was mainly mediated by oxidative stress. Collectively, our results indicate that IAA exposure interfered with mouse oocyte maturation by elevating ROS levels, disrupting spindle assembly, inducing DNA damage, and causing MI arrest.
Show more [+] Less [-]4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro Full text
2021
Sun, Zhendong | Cao, Huiming | Liu, Qian S. | Liang, Yong | Fiedler, H. (Heidelore) | Zhang, Jianqing | Zhou, Qunfang | Jiang, Guibin
Finding the potential environmental obesogens is crucial to explain the prevalence of obesity and the related pathologies. Increasing evidence has showed that many chemicals with endocrine disrupting effects can disturb lipid metabolism. Whether 4-hexylphenol (4-HP), a widely-used surfactant and a potential endocrine disrupting chemical (EDC), is associated to influence adipogenesis and hepatic lipid accumulation remained to be elucidated. In this study, both the 3T3-L1 differentiation model and oleic acid (OA)-treated HepG2 cells were used to investigate the effects of 4-HP on lipid metabolism, and the underlying estrogen receptor (ER)-involved mechanism was explored using MVLN assay, molecular docking simulation and the antagonist test. The results based on lipid droplet staining and triglyceride accumulation assay showed that 4-HP treatment promoted the adipogenic differentiation of 3T3-L1 cells and increased hepatic cellular OA accumulation in exposure concentration-dependent manners. The study on the elaborated transcription networks indicated that 4-HP activated peroxisome proliferator-activated receptor γ (PPARγ) as well as the subsequent adipogenic gene program in 3T3-L1 cells. This chemical also induced the increase of OA uptake and decreases of de novo lipogenesis and fatty acid oxidation in HepG2 cells. The agonistic activity of 4-HP in triggering ER-mediated pathway was shown to correlate with its perturbation in lipid metabolism, as evidenced by the enhanced development of mature lipid-laden adipocytes and suppression of excessive hepatic lipid accumulation upon its co-treatment with ER antagonist. Altogether, these findings provide new insights into the potential health impacts of 4-HP exposure as it may relate to obesity and nonalcoholic fatty liver disease.
Show more [+] Less [-]Birds feeding on tebuconazole treated seeds have reduced breeding output Full text
2021
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Show more [+] Less [-]Environmental exposure to mineral coal and by-products: Influence on human health and genomic instability Full text
2021
Souza, Melissa Rosa de | Hilário Garcia, Ana Letícia | Dalberto, Daiana | Martins, Gabriela | Picinini, Juliana | Souza, Guilherme Maurício Soares de | Chytry, Paola | Dias, Johnny Ferraz | Bobermin, Larissa Daniele | Quincozes-Santos, André | da Silva, Juliana
Environmental exposure to pollution generated by mining and burning coal is inevitable for people living nearby. Therefore, the aim of this study was to evaluate the influence of coal dust on health conditions and genomic instability of individuals who live near coal mines and thermoelectric power plants, and to relate the results to inorganic elements and inflammatory responses. Thus, we evaluated 284 individuals from four cities in the south of Brazil around a region with coal mines and a thermoelectric power plant (one city was considered a negative control). The results of the Comet assay and Micronucleus (MN) test did not show a genotoxic or mutagenic effect related to environmental exposure to coal, but the inflammatory cytokine tumor necrosis factor-α (TNF-α) was increased in all cities around the power plant when compared to the control conditions. Higher levels of MN were associated with body mass index and cardiovascular risk, and higher levels of Damage Index (DI), TNF-α and interleukin1β (IL-1β) with number of cigarettes/day. Principal component analysis (PCA) was used to integrate DNA damage and inflammatory results with inorganic elements. This study also demonstrated the relationship between zinc and MN, copper, and interleukin10 (IL-10), and among silicon and sulfur with DI and nucleoplasmic bridge. A relationship was also observed between the reduction of inorganic elements and both aging and quality of health. The use of different methodologies and the relationship between the results obtained in these studies, including different lifestyles, can increase the understanding of the interaction between this mineral and the health status of residents of regions affected by coal pollution.
Show more [+] Less [-]A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-specific cancer risk assessment Full text
2021
Ali-Taleshi, Mohammad Saleh | Moeinaddini, Mazaher | Riyahi Bakhtiari, Alireza | Feiznia, Sadat | Squizzato, Stefania | Bourliva, Anna
PM₂.₅-bound PAHs were analyzed in a total of 135 daily samples collected during four seasons from 2018 to 2019, at three urban sites in Tehran, Iran. This study aims to investigate spatio-temporal variations, source apportionment, potential local and regional sources contributions and lung cancer risks associated with the 16 US EPA priority PAHs. PM₂.₅ concentrations ranged from 43.8 to 80.3 μg m⁻³ with the highest concentrations observed in summer. Total PAHs (TPAHs) concentrations ranged between 24.6 and 38.9 ng m⁻³. Autumn period exhibited the highest average concentration (48.3 ng m⁻³) followed by winter (29.5 ng m⁻³), spring (25.9 ng m⁻³) and summer (16.1 ng m⁻³). Five PAHs sources were identified by positive matrix factorization (PMF) analysis: diesel exhaust, unburned petroleum-petrogenic, industrial, gasoline exhaust and coal/biomass combustion-natural gas emissions, accounting for 22.3%, 15.6%, 7.5%, 30.9%, and 23.6% of TPAHs, respectively. Site-specific bivariate polar (BP) and conditional bivariate probability function (CBPF) plots were computed to assess PM₂.₅ and TPAHs local source locations. CBPF pointed out that TPHAs sources are likely of local origin, showing the highest probability close to the sampling sites associated with low wind speed (<5 m s⁻¹). The potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) models were applied to investigate the long-range transport of PM₂.₅ and TPAHs. In addition to local sources contributions, Eastern areas were highly related to long-distance transport of PM₂.₅ and the Western areas showed the highest contribution of the total, medium molecular weight (MMW) (4 rings) and high molecular weight (HMW) (5–6 rings) PAHs. The upper bound of incremental lifetime cancer risk (ILCR) via inhalation exposure to PM₂.₅-bound PAHs was at a moderate risk level (3.14 × 10⁻⁴ to 6.17 × 10⁻⁴).
Show more [+] Less [-]Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori) Full text
2021
Hou, Jiayin | Yu, Jianzhong | Qin, Zhaohai | Liu, Xinju | Zhao, Xueping | Hu, Xiuqing | Yu, Ruixian | Wang, Qiang | Yang, Jingying | Shi, Yan | Chen, Liezhong
Guadipyr, which combines neonicotinoid and semicarbazone functional groups in one molecule, exhibits good activity on several pests and high acute and chronic toxicity to silkworms (Bombyx mori). In this report, the effects of low-dose guadipyr on the midgut microbiota and immune system of silkworms were studied. Results showed that the structure and richness of the midgut microbiota of silkworms were altered after being treated with 5.25 mg/L (1/10 of LC₅₀) of guadipyr. The abundance of Pseudomonas was evidently increased, whereas Curvibacter was substantially reduced, which might be related to the growth and immunity of silkworms. The expression of key genes in the Toll, IMD, and JAK/STAT pathways, which ultimately led to the downregulation of antimicrobial peptide genes (AMPs), such as CecA, Defensin1, Leb, and glv2, was reduced upon guadipyr exposure. Simultaneously, the suppression of steroid hormone 20-hydroxyecdysone receptor and response genes, such as BR-C Z4, was detected in the exposed groups. The decreased expression of these immune regulatory pathway-related and 20-hydroxyecdysone signal pathway-related genes indicated that the immune system of silkworms was affected by low-dose guadipyr. Our results revealed the negative effects of guadipyr on silkworms and highlighted the unneglectable toxicity of low-dose guadipyr to this economic insect. Given the risk, it is necessary to control the application of guadipyr in or around the mulberry fields.
Show more [+] Less [-]Characteristics and risk assessment of organophosphate esters and phthalates in soils and vegetation from Dalian, northeast China Full text
2021
Wang, Yan | Zhang, Zihao | Bao, Meijun | Xu, Yue | Zhang, Lijie | Tan, Feng | Zhao, Hongxia
We investigated the concentration, composition, and potential risk of organophosphate esters (OPEs) and phthalates (PAEs) in soils and vegetation from rural areas of Dalian, Northeast China. The residues of total OPEs and PAEs in soils were in the range of 33.1–136 ng/g dw (dry weight) and 465–5450 ng/g dw, while the values in plants were 140–2360 ng/g dw and 2440–21800 ng/g dw, respectively. The concentrations of both chemicals in the plant rhizosphere soils were significantly lower than those in the bulk soils, suggesting an enhanced degradation or uptake by plant. The contaminations in soils also varied for different land use types with the concentrations generally higher in paddy soils than those in maize soils. The OPE and PAE concentrations in plant leaves were slightly higher than those in their corresponding roots. The bioconcentration factors of OPEs & PAEs were significantly negatively correlated with their octanol-water partition coefficients. A hazard assessment suggested potential medium to high risks from tricresyl phosphate (TMPP) and di-n-butyl phthalate (DNBP) for the agricultural soils in Dalian of China. Although the ecological risks of OPEs and PAEs in the rhizosphere soils were lower than those in the bulk soils, the relevant risk could still endanger human health via oral intake of these plants. The daily dietary intakes of OPEs and PAEs via vegetable and rice consuming were estimated, and the result suggests a higher exposure risk via ingestion of leafy vegetable than rice.
Show more [+] Less [-]Fate and budget of poly- and perfluoroalkyl substances in three common garden plants after experimental additions with contaminated river water Full text
2021
McDonough, Andrew M. | Bird, Adam W. | Freeman, Lindsay M. | Luciani, Michael A. | Todd, Aaron K.
Poly- and perfluoroalkyl substances (PFAS) have become ubiquitous contaminants in the environment. Contamination of the terrestrial ecosystem can occur from the release of aqueous film forming foams (AFFF) used in firefighting operations. Following soil contamination with AFFF, studies report root uptake and translocation of PFAS to other plant organs, typically favouring the short chain moiety. This body of experimental work often focuses on edible organs and generally lacks entire PFAS budgets. Here, we calculate short chain (≤6 carbons) and long chain (≥6 or ≥ 7 carbons) PFAS concentrations and respective budgets for terrestrial multimedia mesocosms (plants, soil and lysimeter) of three common agricultural plants (tomato, lettuce and beet) following irrigation with low level PFAS (<1 μg L⁻¹) contaminated river water (short chain: 167 ng L⁻¹; long chain 526 ng L⁻¹). Total net recoveries were strong, ranging between 91% and 118% of added PFAS across all media. While soil was the largest receptor of PFAS in general (∼70% and 115%), there was considerable mobility to various media, including vegetation (∼3% and 20%) and leachate (∼1%). Translocation of short chain PFAS to tomato flowers resulted with biomagnified concentrations (maximus >4000 ng g⁻¹) and accounted for 1.4% of PFAS additions. While smaller tomato fruits had higher concentrations of short chain PFAS, larger fruit had more total PFAS mass. This work provides a detailed description of the fate of short and long chain PFAS when added to relatively uncontaminated terrestrial agricultural systems. We show low-level PFAS concentrations from real-world irrigation sources can affect various receptors across the multimedia landscape. This is most evident in tomato flowers and fruit where biomagnification and high total masses of short chain PFAS occurred which could have implications for pollinators and consumption, respectively.
Show more [+] Less [-]