Refine search
Results 1081-1090 of 1,953
Impacts of Dissolved Organic Matter on the Removal of 17β-Estradiol Using Horseradish Peroxidase
2013
Huang, Wei | Song, Haiyan | Xie, Hongqin | Yin, Youyi | Yuan, Erwen | Xiao, Hong | Wu, Jianzhong | Zhou, Guangying
The impacts of dissolved organic matter (DOM) on the removal of 17β-estradiol (E2) in horseradish peroxidase (HRP)-mediated oxidative coupling systems were investigated in this study. The results showed that the removal rate of E2 and the affinity of HRP to E2 had been significantly decreased in the presence of DOM. Compared with urban sludge DOM (USDOM), river sediment DOM (RSDOM), which features relatively low aromaticity and molecular weight and a large number of O-containing groups, more strongly inhibited the E2–HRP–H₂O₂ reactions than USDOM. The products were analyzed with electrospray ionization mass spectrometry. The results suggested that the self-coupling of E2 was suppressed in the presence of DOM, likely resulting from cross-coupling between DOM and E2 or self-coupling of DOM in the HRP system. The results are useful in understanding the fate of estrogens in natural systems.
Show more [+] Less [-]Sorption of As(V) by Aluminum-Modified Crop Straw-Derived Biochars
2013
Qian, Wei | Zhao, An-zhen | Xu, Ren-kou
Biochars derived from the straws of rice, soybean, and peanut were prepared and modified with aluminum [Al(III)]. These modifications shifted zeta potential-pH curves of the biochars in a positive-value direction and changed surface charge of biochars from negative to positive under acidic conditions. The isoelectric points for 0.6 M Al(III)-modified rice, soybean, and peanut straw biochars were 8.0, 7.8, and 7.5, respectively. Electrostatic attraction of the positively charged surfaces on Al(III)-modified biochars to arsenate [As(V)] enhanced its sorption. The sorption of As(V) by these Al(III)-modified biochars was investigated in batch experiments. Al(III)-modified biochars had greater sorption capacity under acidic conditions compared with corresponding unmodified biochars. While unmodified biochars sorbed negligible amounts of As(V), their Al(III)-modified forms sorbed 445-667 mmol kg-1 at pH 5.0, which were predicted by the Langmuir equation. Modifications with 0.3 M Al3+ improved sorption capacity of As(V) on soybean straw biochar to 445 mmol kg-1, which was further increased by 50 % after modification with 0.6 M Al3+. These As(V) sorption capacities of biochars modified with 0.6 M Al3+ were larger than those of Fe/Al oxides determined at the same pH, which were < 500 mmol kg-1. Thus, biochars modified with 0.6 M Al3+ could substitute Fe/Al oxides used for water purification. However, the sorption of As(V) by the Al(III)-modified biochars increased with decreasing suspension pH. Thus, As(V) removal by Al(III)-modified biochars is suggested to be conducted under acidic conditions, but at pH > 4.0. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Effect of Ionic Strength and Index Cation on the Sorption of Phenanthrene
2013
Duan, Luchun | Naidu, R.
Sorption characteristics of phenanthrene were studied in batch equilibrium experiments with 32 Australian soils that varied widely in physicochemical properties. Sorption of phenanthrene varied widely among the soils and was generally nonlinear, with the nonlinearity index (n) of the Freundlich isotherm varying from 0.62 to 1.01. Simple regression analyses revealed that total organic carbon (TOC) accounts for about 68 % of the variation in the partition coefficient (K′ f ) for sorption among the soils at an equilibrium concentration (C e ) of 0.05 mg/L. The organic carbon normalized distribution coefficient (K OC ), varied considerably between soils with >70 % of the variance of logK OC being accounted for by logTOC, clay and log dissolved organic carbon (DOC). These results show that the phenanthrene C e is influenced by both TOC as well as the DOC in soil suspensions. The effects of ionic strength (IS) and index cation were investigated using four contrasting soils. Results show that with an increase in IS from 0.03 to 0.15 M sorption of phenanthrene generally increased in CaCl2 background solutions, whereas the effect was less significant and variable in NaCl background solutions. Sorption of phenanthrene was slightly higher at low IS (0.03 M) with Na+ as index cation compared with that of Ca2+, whereas an opposite trend was observed at higher IS (0.15 M). For two soils high in TOC, the flocculation of endogenous DOC in the presence of Ca2+ reduced the influence of background electrolyte and resulted in a more linear sorption isotherm as well as higher sorption capacity. This trend was more significant with Ca2+ relative to Na+. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Entrapped Peat in Alginate Beads as Green Adsorbent for the Elimination of Dye Compounds from Vinasses
2013
Vecino, X. | Devesa-Rey, R. | Cruz, J. M. | Moldes, A. B.
It is known that peat can be a potential adsorbent to remove contaminants from wastewaters. When raw peat is used, many limitations exist: Natural peat has a low mechanical strength, high affinity for water, poor chemical stability and tendency to shrink and/or swell. In this work, in order to obtain a more manageable substrate, to be used as adsorbent, peat was entrapped in calcium alginate beads. Box–Behnken factorial design was used to obtain the best condition for the immobilization of peat in calcium alginate beads. The independent variables studied were: peat concentration, sodium alginate concentration and calcium chloride concentration, whereas the dependent variables studied were based on the variation of colour parameters after the treatment of vinasses with entrapped peat. High colour reductions can be achieved using entrapped peat formulated by mixing 2 % of peat with 3 % of sodium alginate and pumped it on calcium chloride (0.05 M).
Show more [+] Less [-]Response of Toxic Cyanobacterium Microcystis aeruginosa to Environmental Pollution
2013
Polyak, Yulia | Zaytseva, Tatyana | Medvedeva, Nadezda
A better understanding of the effect of anthropogenic pollution on the formation of toxic Microcystis blooms is particularly important in regions with large urban centres where rivers, lakes, and estuaries receive large quantities of contaminated domestic and industrial wastes. The response of the bloom-forming cyanobacteria Microcystis aeruginosa CALU 972 and CALU 973 from Russian Karelia to pollution was investigated. The contaminants caused compensatory-adaptive changes that led to the retention of cell viability in the cyanobacterial cells. The adaptation to metals and 1,2,4-triazole was realised due to photosystem changes and the enhanced production of organic compounds, such as proteins and exopolysaccharides. Nutrients caused a significant increase in biomass production by M. aeruginosa. The exposure of M. aeruginosa to nutrients and zinc stimulated growth and contributed to enhanced microcystin concentrations. Variants of microcystins responded differently to pollution. Contaminants had pronounced effects on microcystin RR levels but less effects on microcystin LR levels. Heavy metals, 1,2,4-triazole and nitrogen influenced microcystin concentrations by affecting both the growth of Microcystis and hepatotoxin release into the environment.
Show more [+] Less [-]Performance Evaluation of a Low-Cost Microbial Fuel Cell Using Municipal Wastewater
2013
Buitrón, G. (Germán) | Cervantes-Astorga, Carlos
A low-cost microbial fuel cell (MFC) with a brush-shaped anode was constructed with low-cost materials and operated in a fed-batch mode using wastewater as a substrate. The operational performance of the MFC was evaluated considering the organic matter removal, coulombic efficiencies, and current and power densities. Its relative performance to cost was evaluated considering a MFC with platinum/carbon cathode. It was observed that the organic matter removal efficiency was up to 80 % and the coulombic efficiencies varied from 3.5 to 5.7 %. Maximum average voltages and power and current densities of 207 ± 30 mV, 9.2 ± 2.4 mW m-2, and 56.8 ± 14.9 mA m-2 were obtained, respectively. It was observed that the low-cost MFC produced higher power and current densities per dollar when compared to a MFC using platinum-catalyzed electrode. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Relating P Lability in Stream Sediments to Watershed Land Use via an Effective Sequential Extraction Scheme
2013
Hund, Silja V. | Brown, Sandra | Lavkulich, Les M. | Oswald, Sascha E.
High applications of P fertilizers and manure are general practice in intensive agriculture and may cause eutrophication in adjacent streams. Bioavailability of P can be estimated by sequential extractions commonly used for soil or sediment. A single combined method may facilitate more effective comparisons of topsoils and adjoining stream sediments, and enhance management decisions. In this study, the suitability of an established soil P sequential extraction was tested on stream bed sediments. The study was conducted in the Sumas River watershed in the agricultural Lower Fraser Valley, Canada. Sediment samples with differing land use (forest, low and high intensity agriculture) from 1993, 1994, 2008, and 2009 from 14 sites along the Sumas River and tributaries were used. Total sequential extraction concentrations were in agreement with aqua regia digestion (Rs = 0.96) and showed consistency over the study time sequence. P fractions released by 0.5 M NaHCO3 (median 14 %), 0.1 M NaOH (33 %), and 1.0 M HCl (38 %) were significantly (α = 0.05) higher than P released by other extractants. These three extraction steps provide a practical and time-effective assessment of P lability in stream sediments and may be used as a combined scheme for sediment and soil. Analytical results further revealed that land use has a major and characteristic impact on P lability. With a land use change from forest to intensive agriculture, results showed an increase in total P concentrations (30 to 4,000 ppm) and in P lability, in particular for the moderately labile NaOH-P fraction (20 to 50 %). © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]FT-IR Analysis of Acid Black Dye Biodegradation Using Saccharomyces cerevisiae Immobilized with Treated Sugarcane Bagasse
2013
Mitter, E. K. | Corso, C. R.
Textile industries use large amounts of water in dyeing processes and a wide variety of synthetic dyes. A small concentration of these dyes in the environment can generate highly visible pollution and changes in aquatic ecosystems. Adsorption, biosorption, and biodegradation are the most advantageous dye removal processes. Biodegradation occurs when enzymes produced by certain microorganisms are capable of breaking down the dye molecule. To increase the efficiency of these processes, cell immobilization enables the reuse of the immobilized cells and offers a high degree of mechanical strength, allowing metabolic processes to take place under adverse conditions. The aim of the present study was to investigate the use of Saccharomyces cerevisiae immobilized in activated sugarcane bagasse for the degradation of Acid Black 48 dye in aqueous solutions. For such, sugarcane bagasse was treated with polyethyleneimine (PEI). Concentrations of a 1 % S. cerevisiae suspension were evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays for 240 h with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated by Fourier transform infrared spectrophotometry. The results indicated a probable change in the dye molecule and the possible formation of new metabolites. Thus, S. cerevisiae immobilized in sugarcane bagasse is very attractive for biodegradation processes in the treatment of textile effluents. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Sorption of Cadmium in Some Soil Amendments for In Situ Recovery of Contaminated Soils
2013
Carrillo Zenteno, M. D. | de Freitas, R. C. A. | Fernandes, R. B. A. | Fontes, M. P. F. | Jordão, C. P.
Although Cd concentrations in uncontaminated soils are usually low, pollution of soils by Cd from different sources of contamination pose problems. The application of soil amendments to increase plant production has been used as a viable alternative for recovery of soils contaminated with Cd. However, emphasis needs to be placed on the nature of Cd sorption processes in order that the amendments can be managed appropriately. A range of materials including vermicompost, sugarcane filter cake, palm kernel pie, lime, phosphate rock, and zeolite were used for the sorption studies. Total and nonspecific Cd sorption was estimated by batch experiments, and specific sorption was obtained by the difference between the former and the latter. Best adsorbents for specific Cd sorption from soil amendments were lime and zeolite. Langmuir adsorption isotherms fitted reasonably well in the experimental data, and their constants were evaluated, with R ² values from 0.80 to 0.99. The maximum adsorption capacity of Cd(II) was higher for mineral amendments than for organic amendments and ranged from 0.89 to 10.86 g kg⁻¹. The small value (0.08 L mg⁻¹) of the constant related to the energy of adsorption indicated that Cd was bound weakly to the palm kernel pie. Thermodynamic parameter, the Gibbs free energy, was calculated for each system, and the negative values obtained confirm that the adsorption processes were spontaneous. The values of separation factor, R L, which has been used to predict affinity between adsorbate and adsorbent were between 0 and 1, indicating that sorption was very favorable for Cd(II).
Show more [+] Less [-]Influence of Saharan Dust Transport Events on PM₂.₅ Concentrations and Composition over Athens
2013
Remoundaki, E. | Papayannis, A. | Kassomenos, P. | Matuzevičius, Eugenijus | Kokkalis, P. | Tsezos, M.
The evaluation of the contribution of natural sources to PM₁₀ and PM₂.₅ concentrations is a priority especially for the countries of European south strongly influenced by Saharan dust transport events. Daily PM₂.₅ concentrations and composition were monitored at an urban site at 14 m above ground level, at the National Technical University of Athens campus from February to December 2010. The typical dust constituents Si, Al, Fe, K, Ca, Mg, and Ti were determined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Sulfur, a tracer of anthropogenic origin and major constituent of PM₂.₅, was determined by both WDXRF and ionic chromatography. The contribution of dust and sulfates in PM₂.₅ was calculated from the analytical determinations. An annual mean of 20 μg/m³ was calculated from the mean daily PM₂.₅ concentrations data. Twenty-two per cent of daily concentrations of PM₂.₅ reached or exceeded the EU annual target concentration of 25 μg/m³. The exceedances occurred during 13 short periods of 1–4 days. Back-trajectory analysis was performed for these periods in order to identify the air masses origin. From these periods, ten periods were associated to Saharan dust transport events. The most intense dust transport event occurred between February 17th and 20th and was responsible for the highest recorded PM₂.₅ concentration of 100 μg/m³ where the dust contribution in PM₂.₅ reached 96 %. The other dust transport events were less intense and corresponded to less pronounced enhancements of PM₂.₅ concentrations, and their contribution ranged from 15 to 39 % in PM₂.₅ concentrations. Air masses originated from northwest Africa while the influence of central Sahara was quite smaller.
Show more [+] Less [-]