Refine search
Results 1081-1090 of 1,956
Intra-annual Pattern of Photosynthesis, Growth and Stable Isotope Partitioning in a Poplar Clone Subjected to Ozone and Water Stress Full text
2013
Pollastrini, Martina | Desotgiu, Rosanna | Camin, Federica | Ziller, Luca | Marzuoli, Riccardo | Gerosa, Giacomo | Bussotti, Filippo
An experiment in open-top chambers was carried out in summer 2008 in Curno (northern Italy) in order to study the effects of ozone and drought stress on net photosynthesis, growth and stable isotope partitioning on cuttings of an ozone-sensitive poplar clone (Oxford). The biomass (as dry weight) of stems, leaves and roots was assessed five times during the growing season on a set of plants intended for destructive measurements (set 1). Another set of plants (set 2) was used for repeated measurements (net photosynthesis) and then destroyed at the end of the experiment. The dry weight of the stems in set 1 plants was calculated using allometric relations. The results showed that drought stress had a strong effect on all the parameters assessed. Ozone did not have any effect on biomass allocation in woody stems and stable isotope composition but reduced root/shoot ratios and caused loss of leaves during the growing season. The loss of leaves in the lower part of the crown was partly recovered with the emission of new young leaves in the upper part, thus restoring the overall photosynthetic apparatus. We conclude that the metabolic costs suffered to repair damage and support growth, and the reduction in starch reserves in the roots can compromise growth and the capacity to cope with stress factors in subsequent years.
Show more [+] Less [-]Inorganic Composition of Saline-Irrigated Biomass Full text
2013
Thy, Peter | Yu, Chaowei | Blunk, Sherry L. | Jenkins, Bryan M.
Trace element concentrations on a dry ash basis in saline-irrigated biomass feedstock from the San Joaquin Valley are investigated using multi-element spectroscopic techniques. The results show high concentrations of both Na and K compared to local baseline soil. The content of Na is higher than observed for nonsaline-irrigated biomass reflecting the salinity of the drainage water. The alkali earth elements as well as other alkali trace elements are, however, not markedly affected by the salinity of the irrigation water. The transition elements Cu and Zn are enriched only in the herbaceous feedstock compared to nonsaline biomass. Sulfur, chlorine, and phosphorus are markedly enriched in the saline feedstock. The ash content of toxic elements invariably exceeds the concentrations in the baseline soil for Cu, As, Se, Cd, Sb, and Pb. Compared to nonsaline biomass ashes, Cu is relatively enriched in the herbaceous feedstock ashes, As only in eucalyptus wood, and Cd, Sb, and Pb in woody feedstock. Selenium is relatively enriched in all saline feedstock. Only the concentrations of Cd in woody saline-irrigated feedstock may potentially exceed environmental guideline concentrations and may, thus, warrant caution for using saline biomass for soil amendment.
Show more [+] Less [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area Full text
2013
Phong, N. D. | Tuong, T. P. | Phu, N. D. | Nang, N. D. | Hoanh, Chu Thai
Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area Full text
2013
Phong, N. D. | Tuong, T. P. | Phu, N. D. | Nang, N. D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001–2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7–8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1–2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
Show more [+] Less [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area Full text
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001-2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7-8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1-2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
Show more [+] Less [-]Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption–Pilot and Rapid Small-Scale Column Tests Full text
2013
Salih, Hafiz H. | Patterson, Craig L. | Sorial, George A.
The impact of three commercially available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide, titanium dioxide, and iron oxide nanoparticles. A rapid small-scale column test (RSSCT) was assessed for its ability to predict TCE adsorption in pilot-scale GAC in the presence and absence of NPs. Zeta potential of the three NPs and the GAC were measured. Particle size distribution of the NP dispersions was analyzed as a function of time. The surface area and the pore size distribution of the virgin and the exhausted GAC were obtained along with transmission electron microscopy and Fourier transform infrared spectroscopy analysis. The effect of NPs was found to be a function of their zeta potential, concentration, and particle size distribution. Due to their electrical charge, NPs attached to the GAC and blocked the pores and thus reduced the access to the internal pore structure. However, due to the fast adsorption kinetics of TCE, no effect from the three NPs was observed in the isotherm and kinetic studies. The RSSCT, on the other hand, accurately predicted the pilot-column TCE breakthrough in the presence of NPs.
Show more [+] Less [-]Bulk Atmospheric Mercury Fluxes for the Northern Great Plains, USA Full text
2013
Lupo, Christopher D. | Stone, James J.
Total atmospheric bulk mercury (Hg) concentration and deposition were measured from August 2008 to November 2010 at nine locations in the Northern Great Plains, USA using passive bulk mercury samplers. Monthly mercury concentrations ranged from 1.3 to 51.0 ng L⁻¹ with an overall volume weighted mean of 12.9 ng L⁻¹. Normalized daily Hg fluxes ranged from 0.43 to 110 ng m⁻² day⁻¹ with higher rates occurring during high precipitation months as rainfall during spring and summer. Annual deposition rates ranged from 5.82 to 9.21 μg m⁻² year⁻¹ and were comparable to studies performed at similar latitudes and to estimates from the Mercury Deposition Network (MDN). There was no significant difference (p > 0.05) between measured atmospheric mercury for one colocated bulk Hg sampler and an existing MDN wet-only sampler at Eagle Butte, South Dakota, demonstrating measurement unity between the two sampling techniques in this geographic area.
Show more [+] Less [-]Manganese Oxychloride-Modified Hydrophobic Silica Targets Removal of Nitrates from Water Full text
2013
Halevas, Eleftherios | Malakopoulos, Athanasios | Delimitis, Andreas | Zaspalis, Vassilis | Litsardakis, George | Salifoglou, Athanasios
Poised to gain insight into nitrate adsorption and removal processes from water through employment of modified surfaces, a well-defined inorganic manganese species was used in connection with hydrophobic mesoporous silica. To this end, the surface of hydrophobic mesoporous silica was modified by coating silica with a manganese oxychloride (Mn₈O₁₀Cl₃) nanoparticle layer. A sol–gel method was utilized for the synthesis of hydrophobic silica, using tetraethyl orthosilicate–methyl triethoxysilane (TEOS–MTES) as precursors. Subsequent coating with Mn₈O₁₀Cl₃ took place by mixing MnCl₂ and NaOH with hydrophobic silica. Physicochemical characterization of the Mn₈O₁₀Cl₃-coated silica was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N₂ sorption. The achieved surface modification reduced remarkably the specific surface area by 80.7 % and influenced the ability of nitrates to adsorb on Mn-modified silica. Nitrate adsorption kinetics on Mn₈O₁₀Cl₃-coated silica was studied by a batch reactor. Process parameters including pH, temperature, and initial nitrate concentration were examined thoroughly. The experimental adsorption data were fitted satisfactorily through Langmuir isotherm equations and were found to be well-represented by a pseudo-second-order kinetic model. The collective data emphasize the significance of well-defined inorganic manganese phases, coating hydrophobic silica, in optimally influencing water decontamination from pollutant nitrates.
Show more [+] Less [-]Assessment of Tri- and Hexavalent Chromium Phytotoxicity on Oats (Avena sativa L.) Biomass and Content of Nitrogen Compounds Full text
2013
Wyszkowski, Mirosław | Radziemska, Maja
The purpose of this study was to determine the effect of soil contamination with tri- and hexavalent chromium and soil application of compost, zeolite, and CaO on the mass of oats and content of nitrogen compounds in different organs of oats. The oats mass and content of nitrogen compounds in the crop depended on the type and dose of chromium and alleviating substances incorporated to soil. In the series without neutralizing substances, Cr(VI), unlike Cr(III), had a negative effect on the growth and development of oats. The highest doses of Cr(VI) and Cr(III) stimulated the accumulation of total nitrogen but depressed the content of N-NO₃ ⁻ in most of organs of oats. Among the substances added to soil in order to alleviate the negative impact of Cr (VI) on the mass of plants, compost had a particularly beneficial effect on the growth and development of oats. The application of compost, zeolite, and CaO to soil had a stronger effect on the content of nitrogen compounds in grain and straw than in roots. Soil enrichment with either of the above substances usually raised the content of nitrogen compounds in oats grain and straw, but decreased it in roots.
Show more [+] Less [-]Long-Term Effects of Liming on Soil Chemistry in Stable and Eroded Upland Areas in a Mining Region Full text
2013
Nkongolo, K. K. | Spiers, G. | Beckett, P. | Narendrula, R. | Theriault, G. | Tran, A. | Kalubi, K. N.
Knowledge of the levels of both total metal content and metal bioavailability is critical for understanding the long-term effects of liming on soil chemistry and potential metal uptake by biota. In the present study, the long-term effects of liming on metal bioavailability in soils contaminated by smelter emissions were assessed in eroded and stable uplands in the Sudbury region, Ontario, Canada. Analytical results revealed that total metal and nutrient contents of the soil matrix are not dominantly in forms available for plant uptake for these soils. On average, only 1 and 1.1 % of total copper and nickel, respectively, were phytoavailable. Landscape topography, site stability, and smelter proximity all play an important role in metal accumulation in the surface organic and mineral horizons of regional soils. The levels of total and bioavailable elements for eroded sites were always smaller for stable and reference sites. The pH in limed sites was significantly higher, ranging from 4.12 to 6.75, in the humus form compared to unlimed areas, even 20 to 30 years following applications of the crushed dolostone (liming). No significant differences between limed and unlimed areas were found for total metal and nutrient contents. Interestingly, in the higher pH limed areas, the levels of bioavailable Al, Co, Cu, Fe, K, Mn, Ni, and Sr were lower than on unlimed areas. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Plant Responses to Arsenic: the Role of Nitric Oxide Full text
2013
Farnese, Fernanda S. | de Oliveira, Juraci A. | Gusman, Grasielle S. | Leão, Gabriela A. | Ribeiro, Cleberson | Siman, Luhan I. | Cambraia, José
Arsenic (As) toxicity and the effects of nitric oxide (NO), supplied as sodium nitroprusside (SNP), were analyzed in Pistia stratiotes. The plants, which were grown in nutrient solution at pH 6.5, were exposed to four treatments for 24 h: control; SNP (0.1 mg L-1); As (1.5 mg L-1); and As + SNP (1.5 and 0.1 mg L-1). As accumulated primarily in the roots, indicating the low translocation factor of P. stratiotes. The As accumulation triggered a series of changes with increasing production of reactive oxygen intermediates and damage to cell membranes. The application of SNP was able to mitigate the harmful effects of As. This attenuation was probably due to the action of the SNP as an antioxidant, reducing the superoxide anion concentration, and as a signaling agent. Acting as a signal transducer, SNP increased the activity of enzymatic antioxidants (POX, CAT, and APX) in the leaves and stimulated the entire phytochelatins biosynthetic pathway in the roots (increased sulfate uptake and synthesis of amino acids, non-proteinthiols, and phytochelatins). The As also stimulated the phytochelatins biosynthesis, but this effect was limited, probably because plants exposed only to pollutant showed small increments in the sulfate uptake. Thus, NO also may be involved in gene regulation of sulfate carriers. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]CO₂ Capture with Activated Carbons Prepared by Petroleum Coke and KOH at Low Pressure Full text
2013
Zhu, Xupei | Fu, Yi | Hu, Gengshen | Shen, Yang | Dai, Wei | Hu, Xin
In this study, high surface area porous carbons were synthesized by chemical activation using petroleum coke as the precursor and KOH as the activation agent. The pore structure of the as-synthesized activated carbons was characterized by nitrogen adsorption, and their CO₂ sorption capacities were measured by a magnetic suspension balance at 1 and 10 bar, respectively. The effects of activated carbon preparation parameters (preheating temperature, preheating time, activation time, heating rate during the pyrolysis, and particle size of the precursor) on porous texture, CO₂ adsorption capacity, and CO₂/N₂ selectivity of the activated products were investigated. It has been found that at 1 bar, the CO₂ adsorption capacity is determined by the micropore contribution, i.e., the ratio between micropore surface area and Brunauer–Emmett–Teller (BET) surface area of the sorbents, while at 10 bar, CO₂ adsorption capacity is related to the BET surface area of the activated products. The maximum CO₂ adsorption uptake of 15.1 wt% together with CO₂/N₂ selectivity of 9.4 at 1 bar were obtained for a sample activated at 700 °C indicating its high potential in the capture of CO₂.
Show more [+] Less [-]