Refine search
Results 1131-1140 of 6,560
Bisphenol A and its substitutes regulate human B cell survival via Nrf2 expression Full text
2020
Jang, Ju-Won | Yi, Chae-uk | Yoon, Yeo Dae | Kang, Jong-Soon | Moon, Eun-Yi
B cells contribute to produce inflammatory cytokines and antibodies, to present autoantigens, and to interact with T cells, which lead to body defense and disease control. Nuclear factor (erythroid-derived 2)-like 2(Nrf2) is responsible for gene expression of antioxidant enzymes to protect cells from oxidative stress by reactive oxygen species(ROS) production. Bisphenol A(BPA) may not be safe due to the effect on body’s physiological functions. The chemicals that substitute for BPA may still have similar effects in the body. Tritan™ copolyester is a novel plastic form using BPA substitutes, 1,4-cyclohexanedimethanol(CHDM), dimethyl terephthalate(DMT), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol(TMCD). Isosorbide(ISO) was also used as a substitute for TMCD and DMT. Here, we investigated whether B cell viability is influenced by BPA and its substitutes via Nrf2 induction using WiL2-NS human B lymphoblast cells. When cytotoxicity was measured by using assays with MTT, CellTiter-Glo, trypan blue and propidium iodide, cytotoxicity by BPA was higher than that by substitutes. BPA and its substitutes showed significant cytotoxicity and ROS production, which were attenuated by the treatment with N-acetylcysteine(NAC), a ROS scavenger. In addition, BPA treatment enhanced gene expression of antioxidant enzymes, heme oxygenase(HO)-1, catalase, superoxide dismutase(SOD) 1 and 2. As H₂O₂ treatment induced cell death and Nrf2 amount in WiL2-NS cells, BPA treatment increased Nrf2. Cell death by H₂O₂ was increased in doxycycline-inducible Nrf2-knockdown(KD) cells. In Cytotoxicity by the treatment with BPA or its substitutes was also enhanced in Nrf2-KD cells but that was reduced by Nrf2 overexpression compared to control cells. Taken together, these results implicate that B cell cytotoxicity by substitutes should be lower than BPA and Nrf2 can prevent B cells from BPA- or BPA substitutes-induced cytotoxicity via ROS production. Data suggest that the comprehensive studies or evaluation could be necessary to replace BPA in manufacture by other substitutes.
Show more [+] Less [-]Influence of different land use types on hydrochemistry and heavy metals in surface water in the lakeshore zone of the Caohai wetland, China Full text
2020
Hu, Jing | Long, Yunchuan | Zhou, Wei | Zhu, Chengbin | Yang, Qing | Zhou, Shaoqi | Wu, Pan
In recent years, with the expansion of the Weining county in the northeast of Caohai wetland, the construction of a new port in the north, and the large-scale development of cultivated land in the east, land use patterns in lakeshore areas have changed. These changes have affected the state of lake shores water bodies in complex ways, resulting in varying degrees of local water pollution. To explore the distribution and transformation characteristics of water chemistry and heavy metals in different areas of a water body under the influence of different land uses, especially the interactions between water chemical factors and heavy metals in different areas of a water body, this study used Circos diagrams, originally used in biological genetic analysis, to visualize these interactions. This is the first time that the Circos diagram has been applied to the analysis of environmental interactions. The results showed that there are significant differences in the distribution of water chemical factors and heavy metals in different areas of the Caohai wetland. In particular, Cd is affected by anthropogenic sources. The Cd content is higher in the NCL and UL areas, which are at greater risk from pollution. The factors controlling heavy metal levels in water bodies were different in the different regions. The NCL region was mainly affected by construction excavation ore, UL was mainly affected by man-made industrial inputs, CL was mainly affected by pesticide and fertilizer inputs, and ML and FL were mainly affected by Eh and DO. The PCA results showed that the sources of heavy metals in different types of water bodies in the lakeshore zone were both natural and anthropogenic. Therefore, controlling pollutants, reducing environmental pollution inputs to the lakeshore zone, and strengthening supervision and management near wetlands may be of great significance for handling heavy metal pollution.
Show more [+] Less [-]Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats Full text
2020
Tang, Qian | Tang, Juan | Ren, Xin | Li, Chunmei
Glyphosate is the most popular herbicide used worldwide. This study aimed to investigate the adverse effects of glyphosate on the small intestine and gut microbiota in rats. The rats were gavaged with 0, 5, 50, and 500 mg/kg of body weight glyphosate for 35 continuous days. The different segments of the small intestine were sampled to measure indicators of oxidative stress, ion concentrations and inflammatory responses, and fresh feces were collected for microbiota analysis. The results showed that glyphosate exposure decreased the ratio of villus height to crypt depth in the duodenum and jejunum. Decreased activity of antioxidant enzymes (T-SOD, GSH, GSH-Px) and elevated MDA content were observed in different segments of the small intestine. Furthermore, the concentrations of Fe, Cu, Zn and Mg were significantly decreased or increased. In addition, the mRNA expression levels of IL-1β, IL-6, TNF-α, MAPK3, NF-κB, and Caspase-3 were increased after glyphosate exposure. The 16 S rRNA gene sequencing results indicated that glyphosate exposure significantly increased α-diversity and altered bacterial composition. Glyphosate exposure significantly decreased the relative abundance of the phylum Firmicutes and the genus Lactobacillus, but several potentially pathogenic bacteria were enriched. In conclusion, this study provides important insight to reveal the negative influence of glyphosate exposure on the small intestine, and the altered microbial composition may play a vital role in the process.
Show more [+] Less [-]Enhanced atmospheric ammonia (NH3) pollution in China from 2008 to 2016: Evidence from a combination of observations and emissions Full text
2020
Chen, Shenghai | Cheng, Miaomiao | Guo, Zheng | Xu, Wen | Du, Xiaohui | Li, Yu
The increase of gaseous ammonia (NH₃) concentration in the atmosphere significantly impacts the regional air quality, human health, and the nitrogen cycle of ecosystems. This study aims to verify the reanalyzed product of IASI NH₃ (the ANNI-NH₃-v2.1R-I, hereafter referred to as IASI_NH₃_R) and to analyze the spatial and temporal characteristics of atmospheric NH₃ during 2008–2016 and its underlying influencing factors. Our results show a good agreement between spatial pattern and temporal (annual and monthly) trend of the satellite-derived surface NH₃ concentrations and the measured near-ground NH₃ measurements over different land covers in Eastern China, suggesting the IASI_NH₃_R product can be used to investigate spatial and temporal trends of atmospheric NH₃ concentration. The annual mean NH₃ column concentrations peaked in the North China Plain (averaged 12 × 10¹⁵ mol cm⁻² yr⁻¹) and showed a significant increasing trend at a rate of 0.6 × 10¹⁵ mol cm⁻² yr⁻¹ during the entire period, which can be ascribed to densely populated, intensive agricultural activities and substantial reduction of SO₂ and NO₂ emissions since 2011. The NH₃ column concentrations show a slight increase in winter in most regions of China, probably due to less precipitation amount and increased uncertainty for lower NH₃ columns and the thermal contrast (TC). A large seasonal variation of NH₃ column concentrations was observed, with the highest values in summer and the lowest in autumn. Such seasonal variation is mainly affected by seasonal differences in NH₃ emissions and meteorological conditions. Our results suggest that the current control measures effectively decreased SO₂ and NO₂ pollution but are not yet apparent in the mitigation of atmospheric NH₃ pollution, which also merits more attention considering that no effective measures are being implemented for NH₃ emission control at a regional or national scale in China.
Show more [+] Less [-]Microplastic particles increase arsenic toxicity to rice seedlings Full text
2020
Dong, Youming | Gao, Minling | Song, Zhengguo | Qiu, Weiwen
Hydroponic experiments were conducted to study the effects of microplastic particles of polystyrene (PS) and polytetrafluoroethylene (PTFE) on arsenic (As) content in leaves and roots of rice seedlings, and the changes in root vigor and physiological and biochemical indicators under single or combined PS and PTFE with As(III) treatment. Rice biomass decreased with increasing concentrations of PS, PTFE, and As(III) in the growth medium. The highest root (leaf) biomass decreases were 21.4% (10.2%), 25.4% (11.8%), and 26.2% (16.2%) with the addition of 0.2 g L⁻¹ PS, 0.2 g L⁻¹ PTFE, and 4 mg L⁻¹ As(III), respectively. Microplastic particles and As(III) inhibited biomass accumulation by inhibiting root activity and RuBisCO activity, respectively. The addition of As(III) and microplastic particles (PS or PTFE) inhibited photosynthesis through non-stomatal and stomatal factors, respectively; furthermore, net photosynthetic rate, chlorophyll fluorescence, and the Chl a content of rice were reduced with the addition of As(III) and microplastic particles (PS or PTFE). Microplastic particles and As(III) induced an oxidative burst in rice tissues through mechanical damage and destruction of the tertiary structure of antioxidant enzymes, respectively, thereby increasing O₂⁻ and H₂O₂ in roots and leaves, inducing lipid peroxidation, and destroying cell membranes. When PS and PTFE were added at 0.04 and 0.1 g L⁻¹, respectively, the negative effects of As(III) on rice were reduced. Treatment with 0.2 g L⁻¹ PS or PTFE, combined with As(III), had a higher impact on rice than the application of As(III) alone. PS and PTFE reduced As(III) uptake, and absorbed As decreased with the increasing concentration of microparticles. The underlying mechanisms for these effects may involve direct adsorption of As, competition between As and microplastic particles for adsorption sites on the root surface, and inhibition of root activity by microplastic particles.
Show more [+] Less [-]Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway Full text
2020
Lv, Yueying | Jiang, Huijie | Li, Siyu | Han, Bing | Liu, Yan | Yang, Daqian | Li, Jiayi | Yang, Qingyue | Wu, Pengfei | Zhang, Zhigang
Chromium (Cr) is an internationally recognized carcinogenic hazard that causes serious pulmonary toxicity. However, Cr-induced pulmonary toxicity lacks effective treatment to date. Sulforaphane (SFN), a well-known organosulfur compound, has gained increasing attention because of its unique biological function. This study investigates if SFN could decrease K₂Cr₂O₇-induced pulmonary toxicity and a potential mechanism involved using a rat 35-day Cr-induced pulmonary toxicity model and the mouse alveolar type II epithelial cell line (MLE-12). The results showed that SFN prevented Cr-induced oxidative stress, histopathological lesions, inflammation, apoptosis, and changes in protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) levels in vivo and in vitro. However, SFN can not play the protective effect against K₂Cr₂O₇-induced cell injury after treating by an Akt-specific inhibitor (MK-2206 2HCl) in MLE-12 cells. Furthermore, SFN increased the expression of nuclear factor-E2-related factor-2 (Nrf2) phase II detoxification enzymes. Collectively, this study demonstrates that SFN prevents K₂Cr₂O₇-induced lung toxicity in rats through enhancing Nrf2-mediated exogenous antioxidant defenses via activation of the Akt/GSK-3β/Fyn signaling pathway. SFN may be a novel natural substance to cure Cr-induced lung toxicity.
Show more [+] Less [-]Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida) Full text
2020
Jiang, Xiaofeng | Chang, Yeqian | Zhang, Tong | Qiao, Yu | Klobučar, Göran | Li, Mei
Microplastics are plastic fragments of particle sizes less than 5 mm, which are widely distributed in marine and terrestrial environments. In this study, earthworms Eisenia fetida were exposed to 100 and 1000 μg of 100 nm and 1300 nm fluorescent polystyrene microplastics (PS-MPs) per kg of artificial soil for 14 days. Uptake or accumulation of PS-MPs in earthworm intestines, histopathological changes, oxidative stress, and DNA damage were assessed to determine the toxicological effects of PS-MPs on E. fetida. The results showed that the average accumulated concentrations in the earthworm intestines were higher for 1300 nm PS-MPs (0.084 ± 0.005 and 0.094 ± 0.003 μg/mg for 100 and 1000 μg/kg, respectively) than for 100 nm PS-MPs (0.015 ± 0.001 and 0.033 ± 0.002 μg/mg for 100 and 1000 μg/kg, respectively). In addition, histopathological analysis indicated that the intestinal cells were damaged after exposure to PS-MPs. Furthermore, PS-MPs significantly changed glutathione (GSH) level and superoxide dismutase (SOD) activity. The GSH levels were 86.991 ± 7.723, 165.436 ± 4.256–167.767 ± 18.642, and 93.590 ± 4.279–173.980 ± 15.523 μmol/L in the control, 100 nm, and 1300 nm PS-MPs treatment groups. In addition, the SOD activities were 10.566 ± 0.621, 9.039 ± 0.787–9.408 ± 0.493, and 7.959 ± 0.422–9.195 ± 0.327 U/mg protein for the control, 100 nm, and 1300 nm PS-MPs treatment groups, respectively, indicating that oxidative stress was induced after PS-MPs exposure. Furthermore, the comet assay suggested that exposure to PS-MPs induced DNA damage in earthworms. Overall, 1300 nm PS-MPs showed more toxic effect than 100 nm PS-MPs on earthworms. These findings provide new insights regarding the toxicological effects of low concentrations of microplastics on earthworms, and on the ecological risks of microplastics to soil animals.
Show more [+] Less [-]Different effects of exposure to penconazole and its enantiomers on hepatic glycolipid metabolism of male mice Full text
2020
Meng, Zhiyuan | Liu, Li | Xi, Yexun | Jia, Ming | Yan, Sen | Tian, Sinuo | Sun, Wei | Zhu, Wentao | Li, Xuefeng | Zhou, Zhiqiang
(±) - PEN is a chiral fungicide widely used to control powdery mildew in agriculture. Currently, only a few studies have investigated the toxic effects of (±) – penconazole ((±) – PEN) on non-target organisms, and whether (±) - PEN from the enantiomeric level have toxic effects remains unclear. In this study, we systematically evaluated the effects of exposure to (±) – PEN, (+) – PEN and (−) – PEN on liver function in mice. Biochemical and histopathological analyses showed that exposure to (±) – PEN and (−) – PEN led to significant liver damage and inflammation. However, exposure to (+) – PEN treatment did not cause no adverse effects on liver function and inflammation. ¹H-NMR-based metabolomics revealed that exposure to (±) – PEN, (+) – PEN and (−) – PEN led to the animals developing liver metabolic disorder that was caused by changes in glycolipid metabolism. Quantitative analysis of genes regulating glycolipid metabolism revealed that expression of gluconeogenesis and glycolytic pathway genes were altered in individuals exposed to (±) – PEN, (+) – PEN and (−) – PEN. We also found that (±) – PEN, (+) – PEN and (−) – PEN have different effects on lipid metabolism of the liver. Exposure to (±) – PEN and (−) – PEN resulted in significant accumulation of lipids by regulating fatty acid synthesis, triglyceride synthesis, and fatty acid β oxidation pathways. In summary, we found different toxicological effects in individuals exposed to (±) – PEN, (+) – PEN and (−) – PEN. The results of this study are important for assessing the potential health risks of (±) – PEN.
Show more [+] Less [-]Biotransformation of 6:2 fluorotelomer alcohol by the whole soybean (Glycine max L. Merrill) seedlings Full text
2020
Zhang, Hongna | Wen, Bei | Huang, Honglin | Wang, Sen | Cai, Zongwei | Zhang, Shuzhen
Fluorotelomer alcohols (FTOHs) are important precursors of perfluorocarboxylic acids (PFCAs) in the environment and biota. With the growing application of 6:2 FTOH [F(CF₂)₆CH₂CH₂OH] in product formulation, it is becoming increasingly urgent to investigate its biological fates in different species. In this study, biotransformation of 6:2 FTOH by young soybean plants (Glycine max L. Merrill) were investigated using hydroponic experiments. During the 144 h-exposure, 6:2 FTCA [F(CF₂)₆CH₂COOH], 6:2 FTUCA [F(CF₂)₅CFCHCOOH], 5:3 FTUCA [F(CF₂)₅CHCHCOOH], 5:3 FTCA [F(CF₂)₅CH₂CH₂COOH], PFHxA [F(CF₂)₅COOH] and PFPeA [F(CF₂)₄COOH] were phase I metabolites in soybean. At the end of exposure, 5:3 FTCA (5.08 mol%), PFHxA (2.34 mol%) and PFPeA (0.58 mol%) were three main metabolites in soybean-solution system. 5:3 FTCA was predominant in soybean roots and stems, while PFHxA was the most abundant product in leaves. PFBA [F(CF₂)₃COOH] and 4:3 FTCA [F(CF₂)₄CH₂CH₂COOH] detected in the hydroponic solution most-likely came from the transformation of 5:3 FTCA by root-associated microbes. Moreover, phase II metabolites of 6:2 FTOH were identified and monitored in soybean tissues. Alcohol dehydrogenase, aldehyde dehydrogenase and glutathione S-transferase were found to participate in 6:2 FTOH metabolism. Based on the phase I and phase II metabolism of 6:2 FTOH in soybean, this study for the first time provides evidences for the transformation pathways of 6:2 FTOH in plants.
Show more [+] Less [-]Hydrogeochemical controls on arsenic contamination potential and health threat in an intensive agricultural area, northern China Full text
2020
Li, Zijun | Yang, Qingchun | Yang, Yueso | Xie, Chuan | Ma, Honhyun
The contamination of ground water with arsenic is a great public health concern. This paper discusses the possible formation mechanism of high As groundwater; identify the main influences of natural and anthropogenic factors on As occurrence in groundwater; and finally estimates As-induced potential health hazards in an intensive agricultural region, Datong Basin (Northern China). Our findings indicate that the predominant controlling factors of As in groundwater can be divided into natural factors and anthropogenic activities. Natural factors can be classified as natural potential source of As, environmental geological characteristics and hydrochemical conditions; anthropogenic activities are manifested in industrial coal mining, domestic coal burning, agricultural irrigation return flow and excessive application of fertilizers, and groundwater exploitation. Microbial and/or chemical reduction desorption of arsenate from Fe-oxide/hydroxide and/or clay minerals, As-bearing Fe-oxide/hydroxide reduction coupled with sulfate reduction, and competition with phosphorus are postulated to be the major process dominating As enrichment in the alkaline and anoxic groundwater. In addition, age-dependent human health risk assessment (HHRS) was performed, and high risk values reveal a high toxic and carcinogenic risk of As contaminate for population who is subject to the continuous and chronic exposure to elevated As.
Show more [+] Less [-]