Refine search
Results 131-140 of 4,310
Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Full text
2017
Crampon, M. | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J. | Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA) ; Institut de Chimie Organique Fine (IRCOF) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | "Region Haute Normandie" (France) through the Normandy SCALE research network
Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Full text
2017
Crampon, M. | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J. | Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA) ; Institut de Chimie Organique Fine (IRCOF) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | "Region Haute Normandie" (France) through the Normandy SCALE research network
International audience | This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches.First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties.Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using C-13-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity.These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Show more [+] Less [-]Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Full text
2017
Crampon, Michel | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J.
This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches. First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties. Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using 13C-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity. These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Show more [+] Less [-]Non essential element concentrations in brown grain rice : assessment by advanced data mining techniques Full text
2017
Villafañe, Roxana Noelia | Hidalgo, Melisa Jazmín | Píccoli, Analía Beatriz | Marchevsky, Eduardo Jorge | Pellerano, Roberto Gerardo
The concentrations of 17 non-essential elements (Al, As, Ba, Be, Cd, Ce, Cr, Hg, La, Li, Pb, Sb, Sn, Sr, Th, Ti, and Tl) were determined in brown grain rice samples of two varieties: Fortuna and Largo Fino. The samples were collected from the four main producing regions of Corrientes province (Argentina). Quantitative determinations were performed by inductively coupled plasma mass spectrometry (ICP-MS), using a validated method. The contents of As, Be, Cd, Ce, Cr, Hg, Pb, Sb, Sn, Th, and Tl were very low or not detected in most samples. The non-essential element levels detected were in line with studies conducted in rice from different parts of the world. In order to characterize the influence of geographical origin in the samples, the following classification methods were carried out: linear discriminant analysis (LDA), k-nearest neighbors (k-NN), partial least squares discriminant analysis (PLS-DA), support vector machine (SVM) and random forests (RF). The best performance was obtained by using RF (96%) and SVM (96%). The results reported here showed the variation in the non-essential element profiles in rice grain depending on the geographical origin.
Show more [+] Less [-]Effects of cyproterone acetate and vertically-transmitted microsporidia parasite on Gammarus pulex sperm production Full text
2017
Gismondi, Eric | Fivet, Adeline | Joaquim-Justo, Célia | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Effects of cyproterone acetate and vertically-transmitted microsporidia parasite on Gammarus pulex sperm production Full text
2017
Gismondi, Eric | Fivet, Adeline | Joaquim-Justo, Célia | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Endocrine disruption compounds (EDCs) and parasitism can both interfere with the reproduction process of organisms. The amphipod Gammarus pulex is the host of the vertically transmitted microsporidia Dictyocoela duebenum, and this work was devoted to the investigation of the effect of an exposure to the anti-androgen compound, cyproterone acetate (CPA), and/or of the presence of D. duebenum on the spermatozoa production and length. Significant reduction of the spermatozoa production was observed when G. pulex males were uninfected and exposed to CPA. There also appeared a lower number of spermatozoa when D. duebenum infects G. pulex, whatever the exposure condition. Moreover, we highlighted that CPA has no effect on spermatozoa production when males are infected by D. duebenum, and no treatment has impacted the spermatozoa length. Our results suggest CPA and D. duebenum could impact the endocrine system of G. pulex and especially processes close to the spermatozoa production (e.g., androgenic gland, androgen gland hormone released, gonad-inhibiting hormone synthesized by X-organ). However, as no mechanism of action was highlighted, further testing need to be performed to improve the understanding of their impacts. Finally, results confirm that vertically transmitted microsporidia could be a confounding factor in the endocrine disruption assessments in Gammaridae.
Show more [+] Less [-]Effects of cyproterone acetate and vertically transmitted microsporidia parasite on Gammarus pulex sperm production Full text
2017
Gismondi, Eric | Fivet, Adeline | Joaquim-Justo, Célia
Endocrine disruption compounds (EDCs) and parasitism can both interfere with the reproduction process of organisms. The amphipod Gammarus pulex is the host of the vertically transmitted microsporidia Dictyocoela duebenum, and this work was devoted to the investigation of the effect of an exposure to the anti-androgen compound, cyproterone acetate (CPA), and/or of the presence of D. duebenum on the spermatozoa production and length. Significant reduction of the spermatozoa production was observed when G. pulex males were uninfected and exposed to CPA. There also appeared a lower number of spermatozoa when D. duebenum infects G. pulex, whatever the exposure condition. Moreover, we highlighted that CPA has no effect on spermatozoa production when males are infected by D. duebenum, and no treatment has impacted the spermatozoa length. Our results suggest CPA and D. duebenum could impact the endocrine system of G. pulex and especially processes close to the spermatozoa production (e.g., androgenic gland, androgen gland hormone released, gonad-inhibiting hormone synthesized by X-organ). However, as no mechanism of action was highlighted, further testing need to be performed to improve the understanding of their impacts. Finally, results confirm that vertically transmitted microsporidia could be a confounding factor in the endocrine disruption assessments in Gammaridae.
Show more [+] Less [-]UV-C as an efficient means to combat biofilm formation in show caves: evidence from the La Glacière Cave (France) and laboratory experiments Full text
2017
Pfendler, Stéphane | Einhorn, Olympe | Karimi, Battle | Bousta, Faisl | Cailhol, Didier | Alaoui-Sossé, Laurence | Alaoui-Sossé, Badr | Aleya, Lotfi | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Laboratoire de recherche des monuments historiques (LRMH) ; Centre de Recherche sur la Conservation (CRC) ; Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS) | Environnements, Dynamiques et Territoires de Montagne (EDYTEM) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)
UV-C as an efficient means to combat biofilm formation in show caves: evidence from the La Glacière Cave (France) and laboratory experiments Full text
2017
Pfendler, Stéphane | Einhorn, Olympe | Karimi, Battle | Bousta, Faisl | Cailhol, Didier | Alaoui-Sossé, Laurence | Alaoui-Sossé, Badr | Aleya, Lotfi | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Laboratoire de recherche des monuments historiques (LRMH) ; Centre de Recherche sur la Conservation (CRC) ; Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS) | Environnements, Dynamiques et Territoires de Montagne (EDYTEM) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)
EA BIOmE | International audience | Ultra-violet C (UV-C) treatment is commonly used in sterilization processes in industry, laboratories, and hospitals, showing its efficacy against microorganisms such as bacteria, algae, or fungi. In this study, we have eradicated for the first time all proliferating biofilms present in a show cave (theLa Glacière Cave, Chaux-lès-Passavant, France).Colorimetric measurements of irradiated biofilms were then monitored for 21 months. To understand the importance of exposition of algae to light just after UVradiation, similar tests were carried out in laboratory conditions. Since UV-C can be deleterious for biofilm support, especially parietal painting,we investigated their effects on prehistoric pigment. Results showed complete eradication of cave biofilms with no algae proliferation observed after 21 months. Moreover, quantum yield results showed a decrease directly after UV-C treatment, indicating inhibition of algae photosynthesis. Furthermore, nochanges in pigment color nor in chemical and crystalline properties has been demonstrated. The present findings demonstrate that the UV-C method can be considered environmentally friendly and the best alternative to chemicals. This inexpensive and easily implemented method is advantageousfor cave owners and managers.
Show more [+] Less [-]UV-C as an efficient means to combat biofilm formation in show caves: evidence from the La Glacière Cave (France) and laboratory experiments Full text
2017
Pfendler, Stéphane | Einhorn, Olympe | Karimi, Battle | Bousta, Faisl | Cailhol, Didier | Alaoui-Sosse, Laurence | Alaoui-Sosse, Badr | Aleya, Lotfi
Ultra-violet C (UV-C) treatment is commonly used in sterilization processes in industry, laboratories, and hospitals, showing its efficacy against microorganisms such as bacteria, algae, or fungi. In this study, we have eradicated for the first time all proliferating biofilms present in a show cave (the La Glacière Cave, Chaux-lès-Passavant, France). Colorimetric measurements of irradiated biofilms were then monitored for 21 months. To understand the importance of exposition of algae to light just after UV radiation, similar tests were carried out in laboratory conditions. Since UV-C can be deleterious for biofilm support, especially parietal painting, we investigated their effects on prehistoric pigment. Results showed complete eradication of cave biofilms with no algae proliferation observed after 21 months. Moreover, quantum yield results showed a decrease directly after UV-C treatment, indicating inhibition of algae photosynthesis. Furthermore, no changes in pigment color nor in chemical and crystalline properties has been demonstrated. The present findings demonstrate that the UV-C method can be considered environmentally friendly and the best alternative to chemicals. This inexpensive and easily implemented method is advantageous for cave owners and managers.
Show more [+] Less [-]Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones Full text
2017
Dollinger, Jeanne | Dagès, Cécile | Voltz, Marc | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Research and development project funded by the French Office for Water and Aquatic Bodies (ONEMA)
The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.
Show more [+] Less [-]Side effects of spirotetramat on pupae and adults of a Neotropical strain of <em>Eretmocerus mundus</em> (Hymenoptera: Aphelinidae): Effects on the life parameters and demography Full text
2017
Francesena, Natalia | Desneux, Nicolas | Ribeiro de Campos, Mateus | Schneider, Marcela Inés | Centro de Estudios Parasitologicos y de Vectores [La Plata] (CEPAVE) ; Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional de la Plata [Argentine] (UNLP)-Comisión de Investigaciones Científicas [Buenos Aires] (CIC) | Institut Sophia Agrobiotech (ISA) ; Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS) | COMUE Université Côte d'Azur (2015-2019) (COMUE UCA) | PICT project from the Argentine National Agency for the Promotion of Science and Technology (ANPCyT) [1752]; PIP project from the Argentine National Agency for the Promotion of Science and Technology (ANPCyT) [0205]; CONICET
International audience | The negative impact of conventional pesticides on the environment is already extensively discussed worldwide. Although the use of chemical agents for controlling agricultural pests remains as first-line strategy for pest control, novel biorational active insecticides, such as spirotetramat, have appeared in the pesticide market during recent years in Argentina. The aim of this study was to assess the toxicity of spirotetramat on two developmental stages of a Neotropical strain of Eretmocerus mundus, with the conventional insecticide cypermethrin as a positive control, and to determine spirotetramat's side effects on parasitoid demographic parameters. Lethal effects of both insecticides on pupae and adults were evaluated by adult emergency and survival, respectively; whereas sublethal effects on both development stages were assessed by adult longevity, reproduction capacity, sex ratio, and longevity of the first progeny. Spirotetramat proved less harmful than cypermethrin at both developmental stages studied, corroborating once more the high toxicity of this pyrethroid to natural enemies. Although spirotetramat did not affect the emergence and reproductive capacity of adults surviving pupal exposure, the longevity of the first progeny was reduced as was adult survival and longevity after exposure to residues. Spirotetramat also reduced all demographic parameters in the population evaluation. This work is the first report of spirotetramat toxicity at the population level and demonstrates the need to assess the total effect of pesticides on natural enemies.
Show more [+] Less [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) Full text
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) Full text
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]DTAM [Axe_IRSTEA]DTAM-QT2-ADAPTATION [TR2_IRSTEA]SYNERGIE | International audience | Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Show more [+] Less [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) Full text
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sébastien | Miralles, André | Barberis, Delphine | Scordia, Charlotte | Kuentz-Simonet, Vanessa | Tonneau, Jean-Philippe
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Show more [+] Less [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) Full text
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Show more [+] Less [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) Full text
2017
Vernier F. | Leccia-Phelpin O. | Lescot J.M. | Minette S. | Miralles A. | Barberis D. | Scordia C. | Kuentz-Simonet V. | Tonneau J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economi
Show more [+] Less [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) Full text
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]DTAM [Axe_IRSTEA]DTAM-QT2-ADAPTATION [TR2_IRSTEA]SYNERGIE | International audience | Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Show more [+] Less [-]Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams Full text
2017
Four, Brian | Arce, Evelyne | Danger, Michaël | Gaillard, Juliette | Thomas, Marielle | Banas, Damien | Département Ecologie des Forêts, Prairies et milieux Aquatiques (DEPT EFPA) ; Institut National de la Recherche Agronomique (INRA) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Agence de l'Eau Rhin-Meuse | Zone Atelier Moselle
Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams Full text
2017
Four, Brian | Arce, Evelyne | Danger, Michaël | Gaillard, Juliette | Thomas, Marielle | Banas, Damien | Département Ecologie des Forêts, Prairies et milieux Aquatiques (DEPT EFPA) ; Institut National de la Recherche Agronomique (INRA) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Agence de l'Eau Rhin-Meuse | Zone Atelier Moselle
International audience | Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.
Show more [+] Less [-]Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams Full text
2017
Four, Brian | Arce, Evelyne | Danger, Michaël | Gaillard, Juliette | Thomas, Marielle | Banas, Damien
Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.
Show more [+] Less [-]How do PDMS-coated stir bars used as passive samplers integrate concentration peaks of pesticides in freshwater? | Integration des pics de contamination en pesticides dans les eaux de surface par la passive-SBSE Full text
2017
Assoumani, A. | Margoum, C. | Lombard, A. | Guillemain, C. | Coquery, Marina | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
How do PDMS-coated stir bars used as passive samplers integrate concentration peaks of pesticides in freshwater? | Integration des pics de contamination en pesticides dans les eaux de surface par la passive-SBSE Full text
2017
Assoumani, A. | Margoum, C. | Lombard, A. | Guillemain, C. | Coquery, Marina | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU [TR2_IRSTEA]BELCA | International audience | Passive samplers are theoretically capable of integrating variations of concentrations of micropollutants in freshwater and providing accurate average values. However, this property is rarely verified and quantified experimentally. In this study, we investigated, in controlled conditions, how the polydimethylsiloxane-coated stir bars (passive Twisters) can integrate fluctuating concentrations of 20 moderately hydrophilic to hydrophobic pesticides.
Show more [+] Less [-]How do PDMS-coated stir bars used as passive samplers integrate concentration peaks of pesticides in freshwater? Full text
2017
Assoumani, A. | Margoum, C. | Lombard, A. | Guillemain, C. | Coquery, M.
Passive samplers are theoretically capable of integrating variations of concentrations of micropollutants in freshwater and providing accurate average values. However, this property is rarely verified and quantified experimentally. In this study, we investigated, in controlled conditions, how the polydimethylsiloxane-coated stir bars (passive Twisters) can integrate fluctuating concentrations of 20 moderately hydrophilic to hydrophobic pesticides (2.18 < Log K ₒw < 5.51). In the first two experiments, we studied the pesticide accumulation in the passive Twisters during high concentration peaks of various durations in tap water. We then followed their elimination from the passive Twisters placed in non-contaminated water (experiment no. 1) or in water spiked at low concentrations (experiment no. 2) for 1 week. In the third experiment, we assessed the accuracy of the time-weighted average concentrations (TWAC) obtained from the passive Twisters exposed for 4 days to several concentration variation scenarios. We observed little to no elimination of hydrophobic pesticides from the passive Twisters placed in non-contaminated water and additional accumulation when placed in water spiked at low concentrations. Moreover, passive Twisters allowed determining accurate TWAC (accuracy, determined by TWAC-average measured concentrations ratios, ranged from 82 to 127 %) for the pesticides with Log K ₒw higher than 4.2. In contrast, fast and large elimination was observed for the pesticides with Log K ₒw lower than 4.2 and poorer TWAC accuracy (ranging from 32 to 123 %) was obtained.
Show more [+] Less [-]Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances Full text
2017
Kumar, Naresh | Labille, Jérôme | Bossa, Nathan | Auffan, Melanie | Doumenq, Pierre | Rose, Jérôme | Bottero, Jean-Yves | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Institut National de l'Environnement Industriel et des Risques (INERIS) | Laboratoire Chimie de l'environnement (LCE) ; Aix Marseille Université (AMU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011) | ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011)
Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances Full text
2017
Kumar, Naresh | Labille, Jérôme | Bossa, Nathan | Auffan, Melanie | Doumenq, Pierre | Rose, Jérôme | Bottero, Jean-Yves | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Institut National de l'Environnement Industriel et des Risques (INERIS) | Laboratoire Chimie de l'environnement (LCE) ; Aix Marseille Université (AMU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011) | ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011)
International audience
Show more [+] Less [-]Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances Full text
2017
Kumar, Naresh | Labille, Jérôme | Bossa, Nathan | Auffan, Mélanie | Doumenq, Pierre | Rose, Jerome | Bottero, Jean-Yves
In this study, we assessed the transportability of zero valent iron nanoparticles (nano-Fe⁰) coated with different organics (carboxy methyl cellulose (CMC), poly acrylic acid (PAA), and xanthan gum) in standard porous sand and in real aquifer sediments. Our results suggest that the organic surface coatings optimized for nano-Fe⁰ in porous sand media do not necessarily reflect the same transportability in real field aquifer sediment. Xanthan gum-coated nano-Fe⁰ showed highest transportability in standard porous sand, but the performance was much lower in real aquifer sediment, whereas the PAA-coated nano-Fe⁰ particle showed better transportability both in aquifer sediment and in porous sand media. Nano-Fe⁰ without organic surface coating exhibited very low transportability and was largely retained by the porous medium. Our results suggest that the molecular weight and surface charge density of the organic may play a role in transportability of these nanoparticles. To assess the impact of organic coating on the nanoparticle reactivity with contaminants, we also conducted batch tests to follow TCE degradation using different surface coatings and found no significant difference albeit a minor delay in kinetics. Using theoretical calculations, we also estimated the potential distance traveled by nanoparticles in porous sand as well as in aquifer sediment. Our results suggest that using xanthan gum and PAA as surface coating, nano-Fe⁰ could travel up to 9.8 and 4.1 m, respectively, in the porous sand media as compared to 0.2 and 0.9 m in real aquifer sediment, respectively. Graphical abstract Nanoparticle mobility in porous sand vs and aquifer sediment.
Show more [+] Less [-]