Refine search
Results 1331-1340 of 3,208
Dye Decolourisation Using Two Klebsiella Strains Full text
2015
Zabłocka-Godlewska, Ewa | Przystaś, Wioletta | Grabińska-Sota, Elżbieta
This study aimed to decolourise different dyes using two Klebsiella strains (Bz4 and Rz7) in different concentrations and incubation conditions. Azo (Evans blue (EB)) and triphenylmethane (brilliant green (BG)) dyes were used individually and in mixture. The toxicity of the biotransformation products was estimated. Both strains had a significant potential to decolourise the dyes in the fluorone, azo and triphenylmethane classes. The type and concentration of dye affects the decolourisation effectiveness. Differences in the dye removal potential were observed particularly in the main experiment. The best results were obtained for Bz4 in the samples with EB (up to 95.4 %) and dye mixture (up to 99 %) and for Rz7 with BG (100 %). The living and dead biomass of the strain Bz4 highly absorbs the dyes. Significant effect of the process conditions was noticed for both strains. The best results were obtained in static and semistatic samples (89–99 %) for the removal of EB and a mixture of dyes and in static samples (100 %) for BG. The decrease in zootoxicity (from class IV/V) was noticed in all samples with living biomass of the strain Bz4 (to class III/IV) and in samples with single dyes for Rz7 (to class III/IV). The decrease in phytotoxicity (from class III/IV) was noticed for Bz4 in the samples with BG and a mixture (to class III) and for Rz7 in the samples with BG (to class III). The process conditions did not affect the changes in toxicity after the process.
Show more [+] Less [-]Simultaneous Dephenolization and Decolorization of Treated Palm Oil Mill Effluent by Oil Palm Fiber-Immobilized Trametes Hirsuta Strain AK 04 Full text
2015
Kietkwanboot, Anukool | Tran, Hanh Thi My | Suttinun, Oramas
The phenolics and high organic content present in palm oil mill effluent are the major contributors to its dark brown color, toxicity, and antimicrobial properties. In this study, ten white rot fungi were screened for their potential in the dephenolization and decolorization of treated palm oil mill effluent (TPOME) in solid and liquid state cultures. Among them, Trametes hirsuta strain AK 04 was found to be more tolerant to high TPOME concentrations and showed the highest phenolics and color removal activities. This strain was immobilized onto oil palm fibers (OPFs) and appeared more resistant to inhibitory compounds such as phenolics in TPOME than the free cell culture. The OPF-immobilized fungus was able to effectively remove phenolics and color of TPOME without effluent dilution and addition of nutrients. The activities of laccase and manganese peroxidase were found during dephenolization and decolorization processes. Moreover, the degradation rate of immobilized fungus could be accelerated by pretreatment of phenolics with phenol-degrading bacteria. This method improved the fungal dephenolization and decolorization simultaneously up to 82.2 ± 3.8 % and 87.1 ± 1.1 % after 8 days of incubation. Therefore, a two-stage biological process containing phenol-degrading bacteria and OPF-immobilized fungus could be a feasible and economical method for simultaneous improvement of dephenolization and decolorization of TPOME.
Show more [+] Less [-]“Snapshot” Methodology for Estimation of Pollution Fluxes Under Different Flow Conditions Full text
2015
Assaad, Aziz | Pontvianne, Steve | Pons, Marie-Noëlle
To facilitate the mapping of pollution fluxes under different flow conditions when a limited number of gauging stations are available, a method relying on geographic data was developed to estimate the mean daily stream discharge at each sampling station. It has been tested on a rural river watershed that is located in northeast France (Madon River). The stretch of 100 km is equipped with three gauging stations. Surface water samples were collected at 30 stations under different flow conditions. In a participatory research project, samples were also collected by school children at one of the stations (once a week during the school year over a 2-year period). Dissolved organic carbon and nitrogen species were measured for all samples. These data illustrate the variation in the pollution in the river that is associated with agricultural activities and discharges of untreated wastewater. This method was used to obtain localized points of nutrient discharge, to identify the zones that favor nutrient removal, and to propose remediation work.
Show more [+] Less [-]Analysis of Aluminum, Manganese, and Iron Adsorption for the Design of a Liner for Retention of the Acid Mining Drainage Full text
2015
Miguel, Miriam Gonçalves | Barreto, Rodrigo Paiva | Pereira, Sueli Yoshinaga
The first uranium extraction mine of Brazil, nowadays found in decommissioning phase, has caused several negative environmental impacts in its area, as a result of mining, treatment, and beneficiation processes. The generation of acid mine drainage in waste rock pile 4 (WR-4) is one of the negative impacts with the most critical situation. The acidic water, product of this drainage, presents heavy metals and radioactive elements and it may be infiltrated by the basis of the impoundment basin, where this water is collected for treatment. The objective of this study was to investigate a typical tropical soil, located in the area of Ores Treatment Unit of Caldas in the southwestern state of Minas Gerais, Brazil, in order to use it as a mineral liner for a retention basin to minimize leakage of acidic water through the foundation of a containment dam. In this way, geotechnical, chemical, and mineralogical tests were performed in order to characterize a soil sample collected in the area. In addition, adsorption tests were conducted with solutions of aluminum (Al), manganese (Mn), and iron (Fe), and with and without adjustment of the initial pH (pHₜₒ) of the solutions. The results indicated a well-weathered soil composed of kaolinite, gibbsite, and iron oxides. The adsorption tests showed different behaviors for Al, Mn, and Fe considering or not the adjustment of the pHₜₒ. Aluminum showed low adsorption by soil; because of this, only the adsorption isotherms of Mn and Fe for test with adjustment of the pHₜ₀were determinate. The coefficient of distribution (KD) of Mn was 0.0364 L g⁻¹and Fe 0.0281 L g⁻¹. As for the retardation factor (Rd), its values ranged from 81 to 91 for Mn and from 61 to 79 for Fe, considering different behaviors of the adsorption isotherm models.
Show more [+] Less [-]Interaction of Carbon Nanomaterial Fullerene (C60) and Microcystin-LR in Gills of Fish Cyprinus carpio (Teleostei: Cyprinidae) Under the Incidence of Ultraviolet Radiation Full text
2015
Britto, Roberta Socoowski | Flores, Juliana Artigas | de Lima Mello, Daniel | da Costa Porto, Camilla | Monserrat, José María
One of the most widely used carbon nanomaterials is fullerene (C₆₀), a lipophilic organic compound that potentially can behave as a carrier of toxic molecules, enhancing the entry of environmental contaminants in specific organs. Microcystins (MC) are cyanotoxins very toxic for human and environmental health. Several studies showed that exposure to MC or C₆₀generates reactive oxygen species (ROS) and changes in antioxidant levels. Also, another factor that can come to enhance the toxic potential of both MC and C₆₀is UVA radiation. Therefore, it was evaluated the effects on oxidative stress parameters of ex vivo co-exposure of MC and C₆₀(5 mg/l) in gills of the fish Cyprinus carpio under UVA radiation incidence. The results showed that (a) there was a loss of antioxidant capacity after low MC concentration (L, 50 μg/l) + C₆₀co-exposure under UVA, (b) C₆₀under UVA decreased glutathione-S-transferase (GST) activity, (c) high MC concentration (H, 200 μg/l) + C₆₀co-exposure decreased the concentrations of glutathione (GSH) under UVA or in the dark, (d) L under UVA increased lipid peroxidation, and (e) C₆₀did not cause a higher bioaccumulation of MC in gills. The lowering of GSH in H + C₆₀co-exposure should compromise MC detoxification mediated by GST, although toxin accumulation is not influenced by C₆₀.
Show more [+] Less [-]Microbial Additives in Controlling Odors from Stored Swine Slurry Full text
2015
Choi, Eunsun | Kim, Jaehyuk | Choi, Il | Ahn, Hyunmi | Dong, Jong In | Kim, Hyunook
At livestock farms, the most important thing is to control odors released from manure. In this study, four commercially available microbial additives designed to control odor and NH₃emissions were applied to swine slurries stored in containers, and their effectiveness in odor reduction was statistically evaluated. Seventeen different odorous compounds in the headspace of each container were analyzed to calculate an overall odor index for slurries treated with different microbial additives over time. Of the four microbial additives tested in this study, only two were effective in reducing the odors from the swine slurry. After a 80-day storage period, the odor indexes of the slurries could be reduced by over 70 % with 50 % reduction in volatile fatty acids. In addition, a significant five orders of magnitude reduction in Escherichia coli could be achieved within 60 days. The other two microbial additives did not affect the odor characteristics of swine slurries under storage; their time profiles were statistically identical with that of the control. Results of this study imply that farmers considering applying microbial additives for controlling odors from swine manure should be careful in choosing an additive.
Show more [+] Less [-]Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites Full text
2015
Fuller, Samuel J. | Burke, Ian T. | McMillan, Duncan G. G. | Ding, Weixuan | Stewart, Douglas I.
A serial enrichment culture has been grown in an alkaline Fe(III)-citrate-containing medium from an initial inoculum from a soil layer beneath a chromium ore processing residue (COPR) disposal site where Cr(III) is accumulating from Cr(VI) containing leachate. This culture is dominated by two bacterial genera in the order Clostridiales, Tissierella, and an unnamed Clostridium XI subgroup. This paper investigates the growth characteristics of the culture when Cr(VI) is added to the growth medium and when aquifer sand is substituted for Fe(III)-citrate. The aim is to determine how the availability and chemical form of Fe(III) affects the growth of the bacterial consortium, to determine the impact of Cr(VI) on growth, and thus attempt to understand the factors that are controlling Cr(III) accumulation beneath the COPR site. The culture can grow fermentatively at pH 9.2, but growth is stronger when it is associated with Fe(III) reduction. It can withstand Cr(VI) in the medium, but growth only occurs once Cr(VI) is removed from solution. Cr(VI) reduced the abundance of Tissierella sp. in the culture, whereas the Clostridium XI sp. was Cr(VI) tolerant. In contrast, growth with solid phase Fe(III)-oxyhydroxides (present as coatings on aquifer sand) favoured the Tissierella C sp., possibly because it produces riboflavin as an extracellular electron shuttling compound allowing more efficient electron transfer to solid Fe(III) phases. Thus, it is suggested that bacterially mediated Cr(III) reduction in the soil beneath the COPR site is dependent on Fe(III) reduction to sustain the bacterial community.
Show more [+] Less [-]Phytoremediation Ability of Solanum nigrum L. to Cd-Contaminated Soils with High Levels of Cu, Zn, and Pb Full text
2015
Yu, Cailian | Peng, Xianlong | Yan, Hong | Li, Xiaoxia | Zhou, Zhenhua | Yan, Tingliang
Solanum nigrum L., a potential cadmium (Cd) hyper-accumulator, has not currently been investigated to identify if it has a strong simultaneous accumulative ability to Cd, copper (Cu), zinc (Zn), or lead (Pb) in contaminated soils. In this study, a pot culture experiment was conducted to investigate the phytoremediation effects of S. nigrum L. on these heavy metals. The potential hyper-accumulative characteristics of S. nigrum L. were also discussed. The results showed that S. nigrum L. remediation effects were not inhibited by multi-heavy metals in contaminated soil. On the contrary, the height and wet and dry weights of S. nigrum L. increased compared to the control treatments and to treatments using only one heavy metal contaminant. Results from the Cd treatment experiments showed 1.66- and 1.45-fold increases in stem and root levels; there were also 1.24-, 2.17-, and 1.61-fold extraction increases in the leaves, stems, and roots, respectively. The differences found in shoot and root bioaccumulation coefficient (BC) factors for multi-heavy metal (MHM) treatment were higher than for a single Cd treatment. These results indicate that S. nigrum L. could stimulate biomass production and that it has a strong ability to tolerate and accumulate Cd in contaminated soils with Pb, Zn, and Cu. This study shows that the remediation scope for S. nigrum L. is greater than currently believed and that it will also remove Pb, Zn, and Cu while extracting Cd from contaminated soils.
Show more [+] Less [-]Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison Full text
2015
Perez-Ameneiro, M. | Bustos, G. | Vecino, X. | Barbosa-Pereira, L. | Cruz, J. M. | Moldes, A. B.
Different lignocellulosic substrates consisting of modified barley husk, peanut shells and sawdust were entrapped in calcium alginate beads and used as adsorbents to remove dye compounds from vinasses. For comparative purposes, a biocomposite formulated with humus was also included in this work. Kinetic studies were carried out by applying pseudo-first-order, pseudo-second-order, Chien–Clayton and intraparticle diffusion models, observing a good agreement between theoretical and experimental results when the data were adjusted to pseudo-second-order kinetic model. The results of this study show that lignocellulosic-based biocomposites could be used as an effective and low-cost adsorbent for the removal of dyes from aqueous solutions. Among the heterogeneous biopolymers evaluated, the biocomposite based on barley husk gave the best capacity for dye removal. Moreover, in all cases, it was found that there exists a direct relationship between the capacity of the biocomposites to remove dyes and the percentage of carbon contained in the lignocellulosic residues.
Show more [+] Less [-]Photocatalytic-Fenton Degradation of Glycerol Solution over Visible Light-Responsive CuFe2O4 Full text
2015
Cheng, Chin Kui | Kong, Zi Ying | Khan, Maksudur R.
The current work reports on the degradation of glycerol aqueous solution via photocatalytic-Fenton technique. The CuFe₂O₄ photocatalyst was synthesized via sol-gel method and its physicochemical properties were characterized. The as-synthesized photocatalyst possessed Brunauer-Emmett-Teller (BET)-specific surface area of 104 m²/g. The large BET-specific surface area was also corroborated by the field-emission scanning electron microscopy (FESEM) images which showed porous morphology. In addition, the XRD pattern showed that the visible light-active component, CuFe₂O₄, was successfully formed with band gap energy of 1.58 eV determined from the UV-Vis diffuse reflectance spectroscopy. Significantly, it was determined from the blank run study that the visible light was an integral part of the photoreaction. Without the visible light irradiation, glycerol degradation was low (<4.0 %). In contrast, when visible light was present, the glycerol degradation improved markedly to attain 17.7 % after 4 h of visible light irradiation, even in the absence of CuFe₂O₄ photocatalyst. This can be attributed to splitting of H₂O₂ into hydroxyl (●OH) radical. In the presence of CuFe₂O₄ photocatalyst, the photocatalytic Fenton degradation of glycerol has further enhanced to record nearly 40.0 % degradation at a catalyst loading of 5.0 g/l. This has demonstrated that the CuFe₂O₄ was capable of generating additional hydroxyl radicals to attack the glycerol molecule. Moreover, this degradation kinetics can be captured by Langmuir-Hinshelwood model from which it was found that the adsorption constant related to H₂O₂ was significantly weaker compared to the adsorption constant of glycerol.
Show more [+] Less [-]