Refine search
Results 1381-1390 of 7,921
Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
Show more [+] Less [-]Comprehensive chemical characterization of indoor dust by target, suspect screening and nontarget analysis using LC-HRMS and GC-HRMS
2021
Dubocq, Florian | Kärrman, Anna | Gustavsson, Jakob | Wang, Thanh
Since humans spend more than 90% of their time in indoor environments, indoor exposure can be an important non-dietary pathway to hazardous organic contaminants. It is thus important to characterize the chemical composition of indoor dust to assess the total contaminant exposure and estimate human health risks. The aim of this investigation was to perform a comprehensive chemical characterization of indoor dust. First, the robustness of an adopted extraction method using ultrasonication was evaluated for 85 target compounds. Thereafter, a workflow combining target analysis, suspect screening analysis (SSA) and nontarget analysis (NTA) was applied to dust samples from different indoor environments. Chemical analysis was performed using both gas chromatography and liquid chromatography coupled with high resolution mass spectrometry. Although suppressing matrix effects were prominent, target analysis enabled the quantification of organophosphate/brominated flame retardants (OPFRs/BFRs), liquid crystal monomers (LCMs), toluene diisocyanate, bisphenols, pesticides and tributyl citrate. The SSA confirmed the presence of OPFRs but also enabled the detection of polyethylene glycols (PEGs) and phthalates/parabens. The combination of hierarchical cluster analysis and scaled mass defect plots in the NTA workflow confirmed the presence of the above mentioned compounds, as well as detect other contaminants such as tetrabromobisphenol A, triclocarban, diclofenac and 3,5,6-trichloro-2-pyridinol, which were further confirmed using pure standards.
Show more [+] Less [-]Do improved biomass cookstove interventions improve indoor air quality and blood pressure? A systematic review and meta-analysis
2021
Kumar, Nitya | Phillip, Eunice | Cooper, Helen | Davis, Megan | Langevin, Jessica | Clifford, Mike | Stanistreet, Debbi
This systematic review and meta-analysis evaluates the most recent evidence to examine whether use of improved biomass cookstoves in households in low-middle income countries results in reduction in mean concentrations of carbon monoxide (CO) and particulate matter of size 2.5 μm (PM₂.₅) in the cooking area, as well as reduction in mean systolic (SBP) and diastolic blood pressure (DBP) of adults using the cookstoves when compared to adults who use traditional three stone fire or traditional biomass cookstoves.We searched databases of scientific and grey literature. We included studies if published between January 2012 and June 2021, reported impact of ICS interventions in non-pregnant adults in low/middle-income countries, and reported post-intervention results along with baseline of traditional cookstoves. Outcomes included 24- or 48-h averages of kitchen area PM₂.₅, CO, mean SBP and DBP. Meta-analyses estimated weighted mean differences between baseline and post-intervention values for all outcome measures.Eleven studies were included; ten contributed estimates for HAP and four for BP. Interventions lead to significant reductions in PM₂.₅ (−0.73 mg/m³, 95% CI: −1.33, −0.13), CO (−8.37 ppm, 95%CI: −13.20, −3.54) and SBP (−2.82 mmHg, 95% CI: −5.53, −0.11); and a non-significant reduction in DBP (−0.80 mmHg, 95%CI: −2.33, 0.73), when compared to baseline of traditional cookstoves. Except for DBP, greatest reductions in all outcomes came from standard combustion ICS with a chimney, compared to ICS without a chimney and advanced combustion ICS.Among the reviewed biomass stove types, ICS with a chimney feature resulted in greatest reductions in HAP and BP.
Show more [+] Less [-]Sorption of tetracycline onto hexabromocyclododecane/polystyrene composite and polystyrene microplastics: Statistical physics models, influencing factors, and interaction mechanisms
2021
Lin, Lüjian | Tang, Shuai | Wang, Xuesong | Sun, Xuan | Liu, Ying
Microplastics (MPs) are becoming a major concern due to their great potential to sorb and transport pollutants in the aquatic environment; hexabromocyclododecane (HBCD) is a common chemical additive in polystyrene (PS) MPs. However, the underlying mechanisms for the interaction of tetracycline (TC) onto HBCD-PS composites MPs (HBCD-PS MPs) are still not well documented. Our findings showed that the addition of HBCD resulted in a relatively higher hydrophobicity of PS MPs, and significantly enhanced the sorption ability of HBCD-PS MPs for TC. The kinetic models suggested that the sorption of TC onto PS and HBCD-PS MPs were mainly controlled by film diffusion and intra-particle diffusion, respectively. The statistical physics models were used to elucidate the sorption of TC onto PS and HBCD-PS MPs was associated with the formation of the monolayer, and the results indicated the TC was sorbed onto the two MPs by both multi-molecular and non-parallel processes. The TC sorption was solution pH-dependent while the effect of NaCl content on TC sorption was negligible. The presence of Cu(Ⅱ), Pb(Ⅱ), Cd(Ⅱ), and Zn(Ⅱ) ions had different influences on the TC sorption onto both the MPs. Overall, various mechanisms including π-π and hydrophobic interactions jointly regulated the sorption of TC onto both the MPs. Our results provided new insights into the sorption behavior and interaction mechanisms of TC onto both the MPs and highlighted that the addition of HBCD likely increased the enrichment capacity of MPs for pollutants in the environment.
Show more [+] Less [-]Roles of chlorine and sulphate in MSWIFA in GGBFS binder: Hydration, mechanical properties and stabilization considerations
2021
Ren, Pengfei | Ling, Tung-Chai
In this study, municipal solid waste incineration fly ash (MSWIFA) was first washed (pretreatment) with pure water with liquid to solid (L/S) ratio of 2, 3, 6, 10, to understand the removal efficiency of chlorine and sulphate, as well as its consequent ability as alkaline activator for granulated blast furnace slag (GGBFS). Washed MSWIFA was blended with GGBFS at a fixed ratio of 3:7 to examine their impact on mechanical properties, reaction mechanism, microstructure and leaching behavior. The results showed that chlorine in MSWIFA (>70%) can be washed out easily, while the removal of sulphate was largely depended on the L/S. GGBFS can be better activated by a low L/S (e.g. 2) washed-MSWIFA with attaining the compressive strength of 45.2MPa at 28 days. The higher chlorine and sulphate contents retained in the washed-MSWIFA, the higher the total heat release in the activated GGBFS system. Calcium silicate hydrate (C–S–H), ettringite (AFt) and Friedel’s salt were the main hydration products of the activated binders. The rapid formation of AFt was mainly responsible for the 1-day strength development. Large amounts of Friedel’s salts were formed from 1 day to 3 days associated to the inhibition of sulphate, and the presence of C–S–H played the key role in long-term strength development. The leaching test of heavy metals and soluble ions also demonstrated that washed MSWIFA activated GGBFS binders were harmless to the environment.
Show more [+] Less [-]Oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway: A possible apoptotic mechanism induced by BDE-47 in rainbow trout (Oncorhynchus mykiss) gonadal RTG-2 cells
2021
Zhou, Zhongyuan | Zhou, Bin | Chen, Hongmei | Lu, Keyu | Wang, You
Our previous study showed that 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), the most biotoxic polybrominated diphenyl ether (PBDE) in the marine environment, induced apoptosis in rainbow trout gonadal RTG-2 cells. This effect occurred via ROS- and Ca²⁺-mediated apoptotic pathways, but the exact mechanism remains unknown. Therefore, in the present study, the possible mechanism was examined from the perspective of ROS-induced oxidative stress. The results showed that BDE-47 exposure significantly elevated the malondialdehyde (MDA) contents and the intracellular GSH/GSSG ratio, and the GSH-related enzymes were greatly altered, indicating alteration of the redox status and occurrence of oxidative stress. The mRNA levels of nuclear factor E2-related factor 2 (Nrf2) and its downstream genes were simultaneously greatly elevated. The p38 mitogen-activated protein kinase (MAPK) signaling pathway was also found to be induced by BDE-47 exposure. The addition of SB203580, a p38 MAPK inhibitor resulted in decreased apoptosis. In addition, supplementation with Ca²⁺ inhibitors BAPTA-AM positively affected p38 MAPK activation. Taken together, BDE-47 exposure resulted in the occurrence of oxidative stress and initiated the Nrf2-mediated antioxidant response. Subsequently, the altered redox status induced p38 MAPK activation, which played a pivotal role in the cellular apoptosis of RTG-2 cells.
Show more [+] Less [-]Glyphosate-based herbicide exposure affects diatom community development in natural biofilms
2021
Corrales, Natalie | Meerhoff, Mariana | Antoniades, Dermot
Glyphosate herbicide is ubiquitously used in agriculture and weed control. It has now been identified in aquatic ecosystems worldwide, where numerous studies have suggested that it may have both suppressive and stimulatory effects on diverse non-target organisms. We cultured natural biofilms from a hypereutrophic environment to test the effects on periphytic diatoms of exposure to a glyphosate-based herbicide formulation at concentrations from 0 to 10 mg L⁻¹ of active ingredient. There were clear and significant differences between treatments in diatom community structure after the 15-day experiments. Diversity increased more in low glyphosate treatments relative to higher concentrations, and compositional analyses indicated statistically significant differences between glyphosate treatments. The magnitude of change observed was significantly correlated with glyphosate-based herbicide concentration. Our results show that glyphosate-based herbicides have species-selective effects on benthic diatoms that may significantly alter trajectories of community development and therefore may affect benthic habitats and whole ecosystem function.
Show more [+] Less [-]Comparison of ashing and pyrolysis treatment on cadmium/zinc hyperaccumulator plant: Effects on bioavailability and metal speciation in solid residues and risk assessment
2021
Zhang, Jin | Wu, Shuai | Xu, Jialin | Liang, Peng | Wang, Minyan | Naidu, R. | Liu, Yanju | Man, Yu Bon | Wong, Ming Hung | Wu, Shengchun
Phytoremediation of metal(loid)s contaminated sites is widely used, while there is scarce of investigation on the metal-enriched biomass waste safely disposal which resulted in risks of causing secondary pollution to the soil and water bodies and even to human health. Thus, this study compared the effects of ashing and pyrolysis treatments on cadmium (Cd) and zinc (Zn) hyperaccumulation plant Sedum plumbizincicola. Chemical speciation, the Toxicity Characteristic Leaching Procedure (TCLP), and diethylenetriamine pentaacetic acid (DTPA) extraction were employed to characterize the bioavailability and leachability of Cd and Zn in the solid residues after pyrolysis and ashing. The risk assessment code (RAC) and potential ecological risk index (RI) were subsequently used to evaluate the risk of the solid residues to the environment. The results showed that both ashing and pyrolysis treatments could transform the bioavailable Cd and Zn in S. plumbizincicola into a more stable form, and the higher the temperature the greater the stablility. Pyrolysis converted a maximum of 80.0% of Cd and 70.3% of Zn in S. plumbizincicola to the oxidisable and residual fractions, compared with ashing which achieved only a ∼42% reduction. The pyrolysis process minimised the risk level of Cd and Zn to the environment based on the RAC and RI assessments. The results of the TCLP test, and DTPA extraction confirmed that the leaching rate and the bioavailable portion of Cd and Zn in the biochars produced by pyrolysis were invariably significantly (p < 0.05) lower than the solid residues produced by ashing, and reached the lowest at 650 °C. In other words, pyrolysis was better than ashing for thermal treatment of the metal-enriched hyperaccumulator plant, in view of minimising the bioavailability and leachability of Cd and Zn from the solid residues to the environment. This study provides fundamental data on the choice of treatments for the disposal of metal-enriched plant biomass.
Show more [+] Less [-]Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process
2021
Su, Yinglong | Zhang, Zhongjian | Zhu, Jundong | Shi, Jianhong | Wei, Huawei | Xie, Bing | Shi, Huahong
Microplastics (MPs) are found to be ubiquitous and serve as vectors for other contaminants, and the inevitable aging process changes MP properties and fates. However, whether the MPs in aging process affects the fates of antibiotic resistance gene (ARGs) in aquatic environments is poorly understood. Herein, the physicochemical property alteration of MPs being aged in landfill leachate, an important reservoir of MPs and ARGs, was investigated, and microbial community evolution and ARGs occurrence of MP surface during the aging process were analyzed. Aging process remarkably altered surface properties, including increasing specific surface areas, causing the formation of oxygen-containing groups, and changing surface morphology, which further increased the probability of microbial colonization. The bacterial assemblage on MPs showed higher biofilm-forming and pathogenic potential compared to leachate. ARGs quantification results suggested that MPs exhibited selective enrichment for ARGs in a ratio of 5.7–10³ folds, and the aging process enhanced the enrichment potential. Further co-occurrence networks suggested that the existence of non-random, closer and more stable ARGs-bacterial taxa relations on MP surface affected the ARG transmission. The study of ARG partitioning on MPs indicated that extracellular DNA was a nonnegligible reservoir of ARGs attached on MP surface, and that biofilm bacterial community influenced ARGs partitioning pattern during the aging process. This study confirmed that the aging process could enhance the potential of MPs as vectors for ARGs, which would promote the holistic understanding of MP behavior and risk in natural environments.
Show more [+] Less [-]Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system
2021
Song, Tianwen | Li, Shanshan | Yin, Zichao | Bao, Mutai | Lu, Jinren | Li, Yang
Polymer flooding is one of the most important enhanced oil recovery techniques. However, a large amount of hydrolyzed polyacrylamide (HPAM)-containing wastewater is produced in the process of polymer flooding, and this poses a potential threat to the environment. In this study, the treatment of HPAM-containing wastewater was analyzed in an ozonic-anaerobic-aerobic multistage treatment process involving an ozone reactor (OR), an upflow anaerobic sludge blanket reactor (UASBR), and an aerobic biofilm reactor (ABR). At an HPAM concentration of 500 mg L⁻¹ and an ozone dose of 25 g O₃/g TOC, the HPAM removal rate reached 85.06%. With fracturing of the carbon chain, high-molecular-weight HPAM was degraded into low-molecular-weight compounds. Microbial communities in bioreactors were investigated via high-throughput sequencing, which revealed that norank_c_Bacteroidetes_vadinHA17, norank_f_Cytophagaceae, and Meiothermus were the dominant bacterial groups, and that Methanobacterium, norank_c_WCHA1-57, and Methanosaeta were the key archaeal genera. To the best of our knowledge, this is the first study in which HPAM-containing wastewater is treated using an ozonic-anaerobic-aerobic multistage treatment system. The ideal degradation performance and the presence of keystone microorganisms confirmed that the multistage treatment process is feasible for treatment of HPAM-containing wastewater.
Show more [+] Less [-]