Refine search
Results 1451-1460 of 4,921
Transcriptomic analysis of short-term 17α-ethynylestradiol exposure in two Californian sentinel fish species sardine (Sardinops sagax) and mackerel (Scomber japonicus)
2019
Renaud, Ludivine | Agarwal, Nisha | Richards, Dylan J. | Falcinelli, Silvia | Hazard, E Starr | Carnevali, Oliana | Hyde, John | Hardiman, Gary
Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.
Show more [+] Less [-]Graphene oxide-facilitated uranium transport and release in saturated medium: Effect of ionic strength and medium structure
2019
Zhao, Kang | Chen, Chong | Cheng, Tao | Shang, Jianying
Natural subsurface environment is a complex heterogeneous system. To investigate the effect of ionic strength (IS) and heterogeneity on the transport and remobilization of graphene oxide (GO)-facilitated uranium (U(VI)) in saturated porous media, column experiments were performed by the injection of U(VI) alone and U(VI)+GO mixtures into homogeneous and heterogeneous porous media under low and high ionic strength (1 and 50 mM) conditions, and then the columns were successively flushed with background solution and DI water. Results showed that when U(VI) only was introduced into the columns, IS had little effect on the migration of U(VI) alone in both media and the presence of preferential flow in heterogeneous media slightly enhanced the mobility of U(VI). As U(VI)+GO mixtures were injected into the columns, GO showed strong mobility at low IS and high released peak at high IS. The appearance of GO significantly enhanced U(VI) transport in both media. Under low IS condition, the mobility of U(VI) was significantly enhanced at the injection phase, and the medium heterogeneity further promoted the amount of GO-sorbed U(VI) transport. At high IS, less GO-sorbed U(VI) was observed during injection phase, and a large amount of retained GO-sorbed U(VI) were released with GO remobilization during water flushing phase, and the release showed the longer-tailing phenomenon and the release amount was more pronounced in heterogeneous media. The findings in this study showed that the coupled effect of solution chemistry and media heterogeneity played important roles on GO-facilitated U(VI) transport and release in soil and groundwater system.
Show more [+] Less [-]The immune responses of the Chinese rare minnow (Gobiocypris rarus) exposed to environmentally relevant concentrations of cypermethrin and subsequently infected by the bacteria Pseudomonas fluorescens
2019
Zhang, Le | Zhao, Xu | Yan, Saihong | Zha, Jinmiao | Ma, Xufa
In the present study, to assess the immunotoxicity of cypermethrin (CYP) in fish, Chinese rare minnows (Gobiocypris rarus) were exposed to environmentally relevant concentrations (0.15, 0.5, and 1.5 μg/L) of CYP for 28 d and subjected to pathogen challenge trials for 2 d. After 28 d of CYP exposure, the levels of Immunoglobulin M (IgM), Alkaline phosphatase (ALP), and C-reactive protein (CRP) were significantly decreased (p < 0.05) after treatment with 1.5 μg/L CYP. Moreover, an induction of inflammatory cytokine transcripts (tnfa, il-6, il-8, and il-12) was observed (p < 0.05) after treatment with 1.5 μg/L CYP. After challenge with Pseudomonas fluorescens (P. fluorescens), plasma lysozyme (LYS) activity at 24 and 48 hours post-injection (hpi) was significantly decreased in the 0.5 and 1.5 μg/L CYP treatment groups (p < 0.05). Moreover, liver Complement component 3 (C3) and CRP contents at 24 hpi were significantly decreased in the 1.5 μg/L CYP treatment group (p < 0.05), whereas significant decreases in liver C3 and IgM contents were observed at 48 hpi (p < 0.05). Inhibition of expression of Toll-like receptor-nuclear factor kappa B (TLR-NF-kB) signaling pathway-related genes was observed in the CYP treatment groups and resulted in significant down-regulation of inflammatory cytokines (il-1β and il-12) in the 1.5 μg/L CYP treatment group at 48 hpi (p < 0.05). Interestingly, the mortality in the 0.5 and 1.5 μg/L CYP treatments was significantly increased at 48 hpi (p < 0.05). These results indicated that environmentally relevant concentrations of CYP suppressed the Chinese rare minnow immune system and reduced immune defense against bacterial infection, thereby causing subsequent mortality. Meanwhile, our results demonstrated that a subsequent host resistance challenge is an effective method for determining the immunotoxicity of chemicals (e.g., CYP).
Show more [+] Less [-]Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest
2019
Wang, Qi | Kwak, Jin-Hyeob | Choi, Woo-Jung | Chang, Scott X.
The effect of long-term nitrogen (N) and sulfur (S) deposition on litter mass loss and changes in carbon (C), N, and S composition and enzyme activities during litter decomposition was investigated in a boreal forest. This study included four N × S treatments: control (CK), N application (30 kg N ha−1 yr−1), S application (30 kg S ha−1 yr−1), and N plus S application (both at 30 kg ha−1 yr−1). Two experiments were conducted for 22 months: 1) a common litter decomposition experiment with litter bags containing a common litter (same litter chemistry) and 2) an in-situ litter decomposition experiment with litter from each treatment plot (and thus having different litter chemistry). Litterbags were placed onto the four treatment plots to investigate the direct effect of N and S addition and the combined effect of N and/or S addition and litter chemistry on litter decomposition, respectively. Regardless of the source of litter, N and/or S addition affected C, N and S composition at a certain period of the experiment but did not affect litter mass loss and enzyme activity throughout the experiment, indicating that the N and S addition rates were below the critical level required to affect C and N cycling in the studied ecosystem. However, the greater change in N composition per unit of litter mass loss in the N addition treatment than in the other treatments in the common litter but not in the in-situ litter experiment, suggests that the effect of N addition on N loss and retention depends on the initial litter chemistry. We conclude that the studied N and S addition rates did not affect litter decomposition and elemental cycling in the studied forest ecosystem even though the N and S addition rates were much greater than their ambient deposition rates.
Show more [+] Less [-]Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females
2019
Bohler, Sacha | Krauskopf, Julian | Espín-Pérez, Almudena | Gebel, Stephan | Palli, Domenico | Rantakokko, Panu | Kiviranta, Hannu | Kyrtopoulos, Soterios A. | Balling, Rudi | Kleinjans, Jos
Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male).Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.
Show more [+] Less [-]Role of transient receptor potential cation channel subfamily V member 1 (TRPV1) on ozone-exacerbated allergic asthma in mice
2019
Li, Jinquan | Chen, Yushan | Chen, Qiao Yi | Liu, Dan | Xu, Lang | Cheng, Guirong | Yang, Xu | Guo, Zhenzhong | Zeng, Yan
Around the globe, worsening air pollution is spawning major public health and environmental concerns, especially in the poorest and most populous cities. As a major secondary air pollutant, ozone is a potential risk factor for exacerbated asthma, although the underlying mechanisms remain uncertain. In this study, we aim to investigate the role of ozone on asthma exacerbation using a classic asthmatic model with allergic airway inflammation by treating Balb/c mice with ovalbumin (OVA). Our study shows ozone exposure significantly exacerbated OVA-induced asthmatic phenotypes, including serum immunoglobulin, Th cytokines, inflammatory cell counts, mucus production, airway remodeling, and airway hyper-responsiveness (AHR). Interestingly, expression of transient receptor potential cation channel subfamily V member1 (TRPV1) was also significantly elevated in ozone-exacerbated asthmatic mice and that treatment with TRPV1 antagonist effectively suppressed AHR, airway inflammation and remodeling. The underlying mechanisms of these effects may be associated with suppression of neuropeptide calcitonin gene-related peptide (CGRP) and thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine. Base on the role of TRPV1 in allergic asthma, this study further revealed that inhibition of TRPV1 by TRPV1 antagonist has significant anti-inflammatory effects on ozone-induced asthma exacerbation in this study. Induction of TRPV1 expression may be an important mechanism underlying the increased risks for asthma after exposure to environmental pollutants.
Show more [+] Less [-]Persistence of elevated concentrations of PM, affiliated pharmaceuticals, and tetracycline resistance genes downwind of feedyards
2019
Wooten, Kimberly J. | Mayer, Gregory D. | Smith, Philip N.
Beef cattle feedyards have been identified as sources of large amounts of particulate matter (PM) which may transport affiliated chemicals including steroids, beta agonists, and antibiotics from feedyards into the environment. This study is the first to examine persistence of PM-affiliated pharmaceuticals downwind of feedyards using multiple downwind samples collected at increasing distances from feedyard boundaries (n = 5). Concentrations of antibiotics and ractopamine per gram of PM remained consistent at all downwind locations (out to 4.8 km) whereas concentrations per m³ air decreased significantly at distances between 0.1 and 0.7 km downwind, corresponding to significant decreases in mass of PM. Monensin was present in the highest concentrations of any measured pharmaceutical, with concentrations of 37 μg/g PM (376 ng/m³) air in samples collected within 0.1 km downwind of feedyards. Total copy count of tetracycline resistance genes (tetW, tetQ, tetO, tetM, tetL, and tetB) were also significantly increased in samples collected within 0.1 km downwind of feedyards (10⁶ copies) as compared to samples collected upwind (10³ copies) and farther downwind (10⁴ copies) of feedyard boundaries. These results suggest that transport of pharmaceutical-laden PM into the terrestrial environment is occurring primarily via PM deposition within 0.7 km of the feedyard, while aerial transport persists over longer distances (>4.8 km).
Show more [+] Less [-]Per- and polyfluoroalkyl substances display structure-dependent inhibition towards UDP-glucuronosyltransferases
2019
Liu, Yong-Zhe | Zhang, Zhi-Peng | Fu, Zhi-Wei | Yang, Kun | Ding, Ning | Hu, Li-Gang | Fang, Zhong-Ze | Zhuo, Xiaozhen
Per- and polyfluoroalkyl substances (PFASs) are a large group of chemicals and can be detected in environmental and human samples all over the world. Toxicity of existing and emerging PFASs will be a long-term source of concern. This study aimed to investigate structure-dependent inhibitory effects of 14 PFASs towards the activity of 11 UDP-glucuronosyltransferase (UGT) isoforms. In vitro UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to determine the inhibition of PFASs towards different UGT isoforms. All the PFASs showed <75% of inhibition or stimulation effects on UGT1A3, UGT1A7, UGT1A9, UGT2B4, UGT2B7 and UGT2B17. However, PFASs showed broad inhibition on the activity of UGT1A1 and UGT1A8. The activity of UGT1A1 was inhibited by 98.8%, 98%, 79.9%, 77.1%, and 76.9% at 100 μmoL/L of perfluorodecanoic acid (PFDA), perfluorooctanesulfonic acid potassium salt (PFOS), perfluorotetradecanoic acid (PFTA), perfluorooctanoic acid (PFOA) and perfluorododecanoic acid (PFDoA), respectively. UGT1A8 was inhibited by 97.6%, 94.8%, 86.3%, 83.4% and 77.1% by PFDA, PFTA, perfluorooctadecanoic acid (PFOcDA), PFDoA and PFOS, respectively. Additionally, PFDA significantly inhibited UGT1A6 and UGT1A10 by 96.8% and 91.6%, respectively. PFDoA inhibited the activity of UGT2B15 by 88.2%. PFDA and PFOS exhibited competitive inhibition towards UGT1A1, and PFDA and PFTA showed competitive inhibition towards UGT1A8. The inhibition kinetic parameter (Kᵢ) were 3.15, 1.73, 13.15 and 20.21 μmoL/L for PFDA-1A1, PFOS-1A1, PFDA-1A8 and PFTA-1A8, respectively. The values were calculated to be 0.3 μmoL/L and 1.3 μmoL/L for the in vivo inhibition of PFDA towards UGT1A1-and UGT1A8-catalyzed metabolism of substances, and 0.2 μmoL/L and 2.0 μmoL/L for the inhibition of PFOS towards UGT1A1 and the inhibition of PFTA towards UGT1A8, respectively. Molecular docking indicated that hydrogen bonds and hydrophobic interactions contributed to the interaction between PFASs and UGT isoforms. In conclusion, exposure to PFASs might inhibit the activity of UGTs to disturb metabolism of endogenous compounds and xenobiotics. The structure-related effects of PFASs on UGTs would be very important for risk assessment of PFASs.
Show more [+] Less [-]Silica nanoparticles induce spermatocyte cell autophagy through microRNA-494 targeting AKT in GC-2spd cells
2019
Ren, Lihua | Liu, Jianhui | Zhang, Jin | Wang, Ji | Wei, Jialiu | Li, Yanbo | Guo, Caixia | Sun, Zhiwei | Zhou, Xianqing
Researches had shown that silica nanoparticles (SiNPs) could reduce the quantity and quality of sperms. However, chronic effects of SiNPs have not been well addressed. In this study, mice spermatocyte cells (GC-2spd cells) were continuously exposed to SiNPs (5 μg/mL) for 30 passages and then the changes of microRNA (miRNA) profile and mRNA profile were detected. The function of miRNAs was verified by inhibitors to explore the regulation role of miRNAs in reproductive toxicity induced by SiNPs. The results showed that SiNPs induced cytotoxicity, and activated autophagy in GC-2spd cells. SiNPs led to a total of 1604 mRNAs (697 up-regulated and 907 down-regulated) and 15 miRNAs (6 up-regulated such as miRNA-138 and miRNA-494 and 9 down-regulated) with different expression in GC-2spd cells. The combined miRNA profile and mRNA profile showed that 415 mRNAs with different expression in 5 μg/mL SiNPs group were regulated by miRNA. Furthermore, our study demonstrated that SiNPs decreased the expressions of AKT mRNAs. Moreover, SiNPs had an activation effect on the AMPK/TSC/mTOR pathway. However, inhibitor of miRNA-494 could attenuate the expression levels of AMPK, TSC, LC3Ⅱ and alleviate the decreased of AKT, mTOR, p-mTOR induced by SiNPs. The above results suggested that the low-dose SiNPs exposure could promote autophagy by miRNA-494 targeting AKT, thereby activating AMPK/TSC/mTOR pathway in GC-2spd cells. MiRNA-494 is an important regulator of autophagy by targeting AKT, which provides new evidence for the male reproductive toxicity mechanism of SiNPs.
Show more [+] Less [-]Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure
2019
Lahive, Elma | Walton, Alexander | Horton, Alice A. | Spurgeon, David J. | Svendsen, Claus
Terrestrial environments are subject to extensive pollution by plastics and, based on the slow degradation of plastics, are likely to act as long term sinks for microplastic debris. Currently the hazards of microplastics in soil and the potential impacts on soil organisms is poorly understood. Particularly the role of particle characteristics, such a size or polymer type, in dose-response relationships for microplastics is not known. The aim of this study was to assess the ingestion and toxicity of nylon (polyamide) particles, in three different size ranges, to Enchytraeus crypticus in a soil exposure. Effects were also compared with those of polyvinyl chloride (PVC) particles, in a single size range. Nylon particle ingestion was confirmed using fluorescence microscopy, with greatest ingestion for particles in the smallest size range (13–18 μm). To investigate how particle size affected survival and reproduction, E. crypticus were exposed to nylon particles in two well-defined size ranges (13–18 and 90–150 μm) and concentrations of 20, 50, 90 and 120 g/kg (2–12% w/w). An intermediate nylon size range (63–90 μm) and a larger sized PVC particle (106–150 μm), both at 90 g/kg, were also tested. Survival was not affected by either of the polymer types or sizes. Reproduction was significantly reduced, in a dose-dependent manner, by the nylon particles at high exposure concentrations (>90 g/kg). Smaller size ranges (13–18 μm) had a greater effect compared to larger size ranges (>63 μm), with a calculated EC₅₀ for the 13–18 μm size range of 108 ± 8.5 g/kg. This greater hazard could be qualitatively linked with the ingestion of a greater number of smaller particles. This study highlights the potential for toxic effects of plastics in small size ranges to soil organisms at high exposure concentrations, providing understanding of the hazards microplastics may pose in the terrestrial environment.
Show more [+] Less [-]