Refine search
Results 161-170 of 6,534
Ecological and human health risk assessment of metals leached from end-of-life solar photovoltaics
2020
Nain, Preeti | Kumar, Arun
Photovoltaic industry has shown tremendous growth among renewable energy sector. Though, this high installation rate will eventually result in generation of large volume of end-of-life photovoltaic waste with hazardous metals. In present study, reported leached metal contents from different photovoltaics in previous investigations were utilized for (i) potential fate and transport analysis to soil and groundwater and, (ii) estimating ecological and human health risks via dermal and ingestion pathways for child and adult sub-populations. The results indicate that the children are at highest risk, mainly due to lead (hazard quotient from 1.2 to 2.6). Metals, such as cadmium, lead, indium, molybdenum and tellurium pose maximum risks for child and adult sub-populations via soil-dermal pathway followed by soil-ingestion pathway. This is further proved by calculated high values of contamination factor and geo-accumulation index for cadmium (102.4), indium (238.9) and molybdenum (16.12). The estimated soil contamination is significant with respect to aluminium, silver, cadmium, iron, lead, however, groundwater contamination was insignificant. Exposure to polluted soils yields an aggregate hazard index (for non-cancer effects) > 1 for all four pathways, with soil dermal pathway as the major contributor. Lead poses significant cancer risk for all scenarios (average risk: 0.0098 to 0.047 (soil) and 2.1 × 10⁻⁵ to 3.5 × 10⁻⁵ (groundwater)), whereas acceptable non-cancer risk was observed for other metals from groundwater exposure. Further, variance contribution and spearman correlation coefficient analysis show that metal concentration, exposure frequency and ingestion rate are the main contributors towards overall uncertainty in risk estimates. More detailed assessment for environmentally-sensitive metals should be carried out by considering other field breakage scenarios also, although the assessment suggests low risk for majority of metals examined.
Show more [+] Less [-]A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants
2020
The application of surfactants is an effective way to inhibit the migration of organic contaminants (OCs) from soil to plants, and thus would be a great candidate method for producing safe agricultural products in organic-contaminated farmland. In this study, it was found that cetyltrimethyl ammonium bromide (CTMAB) reduced the OCs in cabbage by 22.0–64.1%, and those in lettuce by 18.8–36.5%. We developed a mathematical model to predict the accumulation of OCs in plants in the presence of surfactants. The successive partitioning of OCs among three phases, namely, soil, soil water and plant roots, was considered. The equilibrium of OC between the soil and soil water was scaled using the sorption coefficient of OCs on soils normalized by the soil organic carbon (Kₒc) and carbon-normalized OCs sorption coefficient with the sorbed surfactants (Kₛₛ). To precisely calculate the Kₒc and Kₛₛ, the bioavailable and bound OCs were measured using a sequential extraction method. Linear positive correlations between the logarithm of Kₒc (or Kₛₛ) and the logarithm of the octanol-water partition coefficient (log Kₒw) of OCs were established for laterite soils, paddy soils and black soils. In the presence of CTMAB, the equilibrium of OCs between the soil water and plant roots was scaled using the carbon-normalized OC sorption coefficient with the sorbed surfactants (Kₛf), whose logarithmic value was linearly correlated with the log Kₒw of the OCs. A three-phase-successive partition-limited model was developed based on these relationships, demonstrating an average prediction accuracy of 76.6 ± 36.8%. Our results indicated that the decrease in bioavailable OCs in soils and the increase in sorption of OCs on roots should be taken into consideration when predicting plant uptake. This research provides a validated mathematical model for predicting the concentration of OCs in plants in the presence of surfactants.
Show more [+] Less [-]Whole-transcriptome analysis of the toxic effects of zearalenone exposure on ceRNA networks in porcine granulosa cells
2020
Zearalenone (ZEA), an estrogen-like mycotoxin, is commonly detected in animal feeds including improperly stored grains. It has been well demonstrated that ovarian granulosa cells (GCs) perform vital roles during follicular development, however, the competing endogenous RNA (ceRNA) network in GCs after ZEA exposure remains to be well described. Here, for the first time, we adopted whole-transcriptome sequence technology to explore the molecular mechanism of ZEA toxicology on porcine GCs. The results provide evidence that the cell cycle of porcine GCs is arrested in the G2/M phase after exposure to ZEA. Furthermore, bioinformation analysis found that cell cycle arrest related genes were perturbed, including CDK1, CCNB1, CDC25A, and CDC25C, which was consistent with the results of RT-qPCR, immunofluorescence, and Western Blotting. Based on the whole-transcriptome sequence data, by constructing ceRNA networks related to cell cycle arrest, we observed that ZEA exposure arrested cell cycle progression at the G2/M phase in porcine GCs, and non-coding RNAs (ncRNAs) played an important role in this process via regulating the expressions of cell cycle arrest related genes. Taken together, our data here provides strong data to support that the toxicological mechanism regarding the widely distributed toxicant ZEA acts through ceRNA networks in porcine granulosa cells.
Show more [+] Less [-]Agricultural plastic mulching as a source of microplastics in the terrestrial environment
2020
Huang, Yi | Liu, Qin | Jia, Weiqian | Yan, Changrong | Wang, Jie
Plastic mulching is suspected to be a significant source of microplastics in terrestrial environments owing to its intensive application and improper disposal. However, there has been a comparative lack of studies examining this hypothesis. In this study, the occurrence of macroplastics in agricultural soils was investigated by analysing 384 soil samples collected from 19 provinces across China. Additionally, the abundance of microplastics was investigated in potential hotspots that have carried out plastic mulching for over 30 years. Macroplastic concentrations in the soil samples ranged from 0.1 to 324.5 kg/ha, with an average of 83.6 kg/ha; the concentrations were higher in western China than in eastern China. A highly significant linear correlation (R² = 0.61) was found between the consumption of mulching film and the plastic residue in soils, indicating plastic film mulching may be a major source of macroplastics. The abundances of microplastic particles increased over time in the locations where plastic mulching was continuously employed, with concentrations of 80.3 ± 49.3, 308 ± 138.1, and 1075.6 ± 346.8 pieces/kg soil in fields with 5, 15, and 24 y of continuous mulching, respectively. Fourier transform infrared analyses revealed that the composition of the microplastics matched that of the mulching films, suggesting the microplastic particles originated from the mulching films. These findings confirm that plastic mulching is an important source of macroplastic and microplastic contamination in terrestrial environments. Further studies to investigate the microplastic hazards in soils are thus necessary.
Show more [+] Less [-]Environmental six-ring polycyclic aromatic hydrocarbons are potent inducers of the AhR-dependent signaling in human cells
2020
Vondráček, Jan | Pěnčíková, Kateřina | Ciganek, Miroslav | Pivnička, Jakub | Karasová, Martina | Hýžďalová, Martina | Strapáčová, Simona | Pálková, Lenka | Neča, Jiří | Matthews, Jason | Lom, Michal Vojtíšek | Topinka, Jan | Milcová, Alena | Machala, Miroslav
The toxicities of many environmental polycyclic aromatic hydrocarbons (PAHs), in particular those of high-molecular-weight PAHs (with MW higher than 300), remain poorly characterized. The objective of this study was to evaluate the ability of selected environmentally relevant PAHs with MW 302 (MW302 PAHs) to activate the aryl hydrocarbon receptor (AhR), since this represents a major toxic mode of action of PAHs. A large number of the evaluated compounds exhibited strong AhR-mediated activities, in particular in human models. The studied MW302 PAHs also significantly contributed to the overall calculated AhR activities of complex environmental mixtures, including both defined standard reference materials and collected diesel exhaust particles. The high AhR-mediated activities of representative MW302 PAHs, e.g. naphtho[1,2-k]fluoranthene, corresponded with the modulation of expression of relevant AhR target genes in a human lung cell model, or with the AhR-dependent suppression of cell cycle progression/proliferation in estrogen-sensitive cells. This was in a marked contrast with the limited genotoxicity of the same compound(s). Given the substantial levels of the AhR-activating MW302 PAHs in combustion particles, it seems important to continue to investigate the toxic modes of action of this large group of PAHs associated with airborne particulate matter.
Show more [+] Less [-]Simultaneous determination of seven perfluoroalkyl carboxylic acids in water samples by 2,3,4,5,6-pentafluorobenzyl bromide derivatization and gas chromatography-mass spectrometry
2020
Ji, Yongyan | Cui, Zongyan | Wang, Zhibin | Cao, Yanzhong | Li, Xuemin | Li, Adan
A new derivatization reagent, 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr), was employed to determine seven perfluoroalkyl carboxylic acids (PFCAs) simultaneously in tap water with gas chromatography-mass spectrometry (GC-MS) technique in this study. Firstly, seven PFCAs were derivatized to their corresponding esters under alkaline condition. The derivatization conditions including the amount of PFBBr and K₂CO₃, derivatization temperature and time were optimized to increase the derivatization efficiency. The 14 tap water samples collected from different places of China were enriched and purified through solid phase extraction pretreatment. The limits of detection (LODs) and the limits of quantitation (LOQs) ranged from 0.1 ng/L to 0.28 ng/L and from 0.3 ng/L to 0.84 ng/L, respectively. The new method offers a linear relationship in the range from 2 ng/L to 2000 ng/L, and the correlation coefficients ranged from 0.9938 to 0.9994. The results showed that GC-MS combined with pre-column derivatization is a reliable method for the analysis of PFCAs in the aqueous environment.
Show more [+] Less [-]A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms
2020
Lin, Huirong | Wang, Chengyun | Zhao, Hongmei | Chen, Guancun | Chen, Xincai
The synergistic cooperation of microbial cells and their extracellular polymeric substances (EPS) in biofilms is critical for the biofilm’s resistance to heavy metals and the migration and transformation of heavy metals. However, the effects of different components of biofilms have not been fully understood. In this study, the spatial distribution and speciation of copper in the colloidal EPS, capsular EPS, cell walls and membranes, and intracellular fraction of unsaturated Pseudomonas putida (P. putida) CZ1 biofilms were fully determined at the subcellular level. It was found that 60–67% of copper was located in the extracellular fraction of biofilms, with 44.7–42.3% in the capsular EPS. In addition, there was 15.5–20.1% and 17.2–21.2% of copper found in the cell walls and membranes or the intracellular fraction, respectively. Moreover, an X-ray absorption fine structure spectra analysis revealed that copper was primarily bound by carboxyl-, phosphate-, and hydrosulfide-like ligands within the extracellular polymeric matrix, cell walls and membranes, and intracellular fraction, respectively. In addition, macromolecule quantification, fourier-transform infrared spectroscopy spectra and sulfur K-edge x-ray absorption near edge structure analysis further showed the carboxyl-rich acidic polysaccharides in EPS, phospholipids in cell walls and cell membranes, and thiol-rich intracellular proteins were involved in binding of copper in the different components of biofilm. The full understanding of the distribution and chemical species of heavy metals in biofilms not only promotes a deep understanding of the interaction mechanisms between biofilms and heavy metals, but also contributes to the development of effective biofilm-based heavy metal pollution remediation technologies.
Show more [+] Less [-]Handling uncertainty in optimal design of reservoir water quality monitoring systems
2020
Pourshahabi, Shokoufeh | Rakhshandehroo, Gholamreza | Talebbeydokhti, Nasser | Nikoo, Mohammad Reza | Masoumi, Fariborz
In the present paper, a scenario-based many-objective optimization model is developed for the spatio-temporal optimal design of reservoir water quality monitoring systems considering uncertainties. The proposed methodology is based on the concept of nonlinear interval number programming and information theory, while handling uncertainties of temperature, reservoir inflow, and inflow constituent concentration. A reference-point-based non-dominated sorting genetic algorithm (NSGA-III) is used to deal with the many-objective optimization problem. The proposed model is developed for the Karkheh reservoir system in Iran as a real-world problem. The results show excellent performance of the optimized water quality sampling locations instead of all potential ones in providing adequate information about the reservoir water quality status. The presented uncertainty-based model leads to a 55.73% reduction in the radius of the uncertain interval caused by different scenarios. Handling uncertainties in a spatio-temporal many-objective optimization problem is the main contribution of this study, yielding a reliable and robust design of a reservoir monitoring system that is less sensitive to various scenarios.
Show more [+] Less [-]Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China
2020
Yang, Jingwei | Holbach, Andreas | Wilhelms, Andre | Krieg, Julia | Qin, Yanwen | Zheng, Binghui | Zou, Hua | Qin, Boqiang | Zhu, Guangwei | Wu, Tingfeng | Norra, Stefan
In shallow eutrophic lakes, metal remobilization is closely related to the resuspension and eutrophication. An improved understanding of metal dynamics by biogeochemical processes is essential for effective management strategies. We measured concentrations of nine metals (Cr, Cu, Zn, Ni, Pb, Fe, Al, Mg, and Mn) in water and sediments during seven periods from 2014 to 2018 in northern Lake Taihu, to investigate the metal pollution status, spatial distributions, mineral constituents, and their interactions with P. Moreover, an automatic weather station and online multi-sensor systems were used to measure meteorological and physicochemical parameters. Combining these measurements, we analyzed the controlling factors of metal dynamics. Shallow and eutrophic northern Lake Taihu presents more serious metal pollution in sediments than the average of lakes in Jiangsu Province. We found chronic and acute toxicity levels of dissolved Pb and Zn (respectively), compared with US-EPA “National Recommended Water Quality Criteria”. Suspended particles and sediment have been polluted in different degrees from uncontaminated to extremely contaminated according to German pollution grade by LAWA (Bund/Länder-Arbeitsgemeinschaft Wasser). Polluted particles might pose a risk due to high resuspension rate and intense algal activity in shallow eutrophic lakes. Suspended particles have similar mineral constituents to sediments and increased with increasing wind velocity. Al, Fe, Mg, and Mn in the sediment were rarely affected by anthropogenic pollution according to the geoaccumulation index. Among them, Mn dynamics is very likely associated with algae. Micronutrient uptake by algal will affect the migration of metals and intensifies their remobilization. Intensive pollution of most particulate metals were in the industrialized and down-wind area, where algae form mats and decompose. Moreover, algal decomposition induced low-oxygen might stimulate the release of metals from sediment. Improving the eutrophication status, dredging sediment, and salvaging cyanobacteria biomass are possible ways to remove or reduce metal contaminations.
Show more [+] Less [-]Heterogeneity of influential factors across the entire air quality spectrum in Chinese cities: A spatial quantile regression analysis
2020
Han, Xiaodan | Fang, Wei | Li, Huajiao | Wang, Yao | Shi, Jianglan
Most of the previous researches estimate influencing factors impact on air quality average without considering the heterogeneity of influential factors on different levels of air quality. In order to detect the different effects of influencing factors on air quality index (AQI) between lower-AQI and higher-AQI cities, this study applies a spatial quantile regression model (SQRM) to investigate heterogeneity of influential factors on AQI, while accounting for spatial autocorrelation of AQI. The results show that heterogeneity effects of windspeed, terrain slope, urbanization sprawl and spatial autocorrelation on AQI are large across the entire AQI spectrum, while heterogeneity effects of precipitation, temperature, relative humidity, terrain fluctuation and urbanization intensity on AQI are not obvious. The spatial positive autocorrelation of AQI in higher-AQI cities is greater than that in lower-AQI cities. Compared with higher-AQI cities, the negative impact of terrain slope on AQI is lager in lower-AQI cities. One unit increase in wind speed contributes AQI to decrease 9.31 to 5.64 then to 5.39 for lower, medium and higher-AQI cities. One unit increase in urbanization sprawl would lead AQI increase 25.6 to 15.6 then to 10.5 for lower, medium and higher-AQI cities. The heterogeneity analysis of meteorological, topographic and socioeconomic factors effects on air quality are of guiding significance for realizing the differentiation of policy measures for air pollution prevention and control.
Show more [+] Less [-]